الحل العددي لمعادلة فولتيرا – فريدهولم التكاملية - التفاضلية الكسورية باستخدام متعددات حدود لاكرانج

محتوى المقالة الرئيسي

Nour Salman
https://orcid.org/0000-0001-7786-1851
Muna Mansour Mustfaf
https://orcid.org/0000-0001-8620-4976

الملخص

في هذا البحث، ستراتيجيات جديدة لإيجاد الحل العددي للمعادلات الخطية الكسورية التفاضلية - التكاملية فولتيرا- فريدهولم (LFVFIDE) تم دراستها. الطرق المتبعه على ثلاث انواع من متعددات الحدود لاكرانج وهي: متعددة حدود لاكرانج الأصلية (OLP) ، متعددة حدود لاكرانج ذات الدعامة المركزية (BLP) و متعددة حدود لاكرانج المعدلة  (MLP).كما تم اقتراح خوارزمية عامة واعطاء  أمثلة لبرهنة فعالية الطرق وتنفيذها. وأخيرًا ، تم استخدام مقارنة بين الطرق المقترحة والطرق الأخرى لحل هذا النوع من المعادلات.

تفاصيل المقالة

كيفية الاقتباس
1.
الحل العددي لمعادلة فولتيرا – فريدهولم التكاملية - التفاضلية الكسورية باستخدام متعددات حدود لاكرانج. Baghdad Sci.J [انترنت]. 1 ديسمبر، 2020 [وثق 19 ديسمبر، 2024];17(4):1234. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/3389
القسم
article

كيفية الاقتباس

1.
الحل العددي لمعادلة فولتيرا – فريدهولم التكاملية - التفاضلية الكسورية باستخدام متعددات حدود لاكرانج. Baghdad Sci.J [انترنت]. 1 ديسمبر، 2020 [وثق 19 ديسمبر، 2024];17(4):1234. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/3389

المراجع

Mittal RC, Nigam R. Solution of Fractional Integro-Differential Equations by Adomian Decomposition Method. Int. J. of Appl. Math. and Mech. 2008;4(2):87-94.

Mohammed D Sh. Numerical Solution of Fractional Integro-Differential Equations by Least Squares Method and Shifted Chebyshev Polynomial. Math. Probl. Eng. [Internet]. 2014; 2014(5):1-5. Available from: http://dx.doi.org/10.1155/2014/431965.

Huang L, Li XF, Zhao Y, Duan XY. Approximate Solution of Fractional Integro-Differential Equation by Taylor Expansion Method. COMPUT MATH APPL. [Internet] . 2011; 62: 1127-1134. Available from:https://doi.org/10.1016/j.camwa.2011.03.037

Maleknejad K, Sahlan MN, Ostadi A. Numerical Solution of Fractional Integro-differential Equation by Using Cubic B-splin Wavelets. Proceedings of the World Congress of Egeineering. 2013 July; I(WCE 2013) :3-8.

Mohamed MS, Alharthi MR, Alotabi RA. Solving Fractional Integro-Differential Equation by Homotopy Analysis Transform Method. IJPAM. [Internet].2016;106(4): 1037-1055. Available from: http://www.ijpam.eu, doi:10.12732/ijpam.v106i4.6

Shwayyea RT, Mahdy AMS. Numerical Solution of Fractional Integro-Differential Equations by Least Squares Method and Shifted Laguerre Polynomials Pseudo-Spectral Method. IJSER. 2016(April); 7(4):1589-1596.

Oyedepo T, Taiwo OA, Abubakar JU, Ogunwobi ZO. Numerical studies for Solving Fractional Integro-Differential Equations by using Least Squares Method and Bernstein Polynomials. Fluid Mech Open Acc. [Internet].2016; 3(3). Available from: DOI:10.4172/2476-2296.1000142.

Senol M, Kasmaei HD. On the Numerical Solution of Nonlinear Fractional-Integro Differential Equations. NTMSCI. 2017;5(3):118-127.

Alkan S, Hatipoglu VF. Approximate Solution of Volterra-Fredholm Integro-Differential Equations of Fractional Order. TMJ.2017;10(2) :1-13.

Syam MI. Analytical Solution of the Fractional Fredholm Integro Differential Equation Using the Fractional Residual Power Series Method. Complexity. [Internet]. 2017;2017:1-6. Available from: https://doi.org/10.1155/2017/4573589.

Hamoud AA, Ghadle KP. Modified Laplace Decomposition Method for Fractional Volterra-Fredholm Integro-Differential Equation. JMM.2018;6(1):91-104.

Hamoud AA, Ghadle KP, Issa MSB, Giniswamy. Existence and Uniqueness Theorems for Fractional Volterra-Fredholm Integro-Differential Equations. IJAM. 2018; 31(3):333-348.

Wang K, Wang Q. The Lagrange Collocation Method for Solving the Volterra–Fredholm Integral Equations . Appl Math Comput.2013;219(21): 10434-10440.

Mustafa MM, Muhammad AM. Numerical Solution of Linear Volterra-Fredholm Integro-Differential Equations Using Lagrange Polynomials. Theory Appl . 2014; 4(9): 158-166.

Mustafa MM, Ghanim IN. Numerical Solution of Linear Volterra-Fredholm Integral Equations Using Lagrange Polynomials. Theory Appl . 2014; 4(5): 137-146.

Liu H, Huang J, Pan Y. Numerical Solution of Two Dimensional Fredholm Integral Equations of the Second Kind by the Barycentric Lagrange Function. JAMP.2017; 5: 259-266.

Pan Y, Huang J. Numerical Solution of Two-Dimensional Fredholm Integral Equations via Modification of Barycentric Rational Interpolation. Adv. Eng. Softw. 2017; 118(Amcce):582–586.

Tian D, He J. The Barycentric Rational Interpolation Collocation Method for Boundary Value Problems. THERM SCI.2018;22(4): 1773-1779.

Wu H, Wang Y. Zhang W. Numerical Solution of a Class of Nonlinear Partial Differential Equations by Using Barycentric Interpolation Collocation Method. Math. Probl. Eng. [Internet] . 2018; 2018, Available from: https://doi.org/10.1155/2018/7260346.

Mathews JH, Fink kD. Numerical Methods Using MATLAB. 3rd Edition, Prentice Hall, Inc.1999.662p

Berrut JP, Trefethen LN. Barycentric Lagrange Interpolation. SIAM REV..2004; 46(3): 501-517.

Higham NJ. The Numerical Stability of Barycentric Lagrange Interpolation IMA J. Numer. Anal.2004;24(4): 547–556.

Daşcioğlu A, Bayram DV. Solving Fractional Fredholm Integro-Differential Equations by Laguerre Polynomials. Sains Malays. 2019; 48(1):251-257.

Odibat ZM, Momani Sh. An Algorithm for the Numerical Solution of Differential Equations of Fractional Order", JAMSI .2008; 26(1-2): 15-27.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.