تأثير مكونات المحلول الالكتروليتي على الخواص التركيبية والخواص الكهروكيميائية الضوئية لمصفوفات الانابيب النانوية للتيتانيا المحضرة بواسطة تقنية الأنودة
محتوى المقالة الرئيسي
الملخص
العمل الحالي يتضمن تأثير مكونات المحلول الالكتروليتي
[@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)].
على التركيب والخصائص الكهروكيميائية الضوئية للانابيب النانوية تيتانيا. تم تحضير ركائز التيتانيا بنجاح بواسطة تقنية الانودة والتي اجريت عند 40 فولت ولمدة ساعة وفي محاليل الكتروليتية مختلفة. شخصت الخواص الكيميائية الفيزيائية لـ TNTAs باستخدام مقياس حيود الأشعة السينية (XRD) ، المجهر الإلكتروني (FESEM) ،والأشعة السينية المشتتة للطاقة (EDX) , والانعكاس الطيفي للاشعة فوق البنفسجية. تم تقييم الاستجابة الكهروضوئية ل TNTAs في( M 0.01) Na2S تحت ضوء متقطع من مصباح الهالوجين. لم يكن قطب TNTAs المعد في المحلول الالكتروليتي 1@ كافيًا لزيادة استجابة التيار الكهروضوئي مقارنة بـ TNTAs المعد في 2@ . أظهر القطب TNTAs المعد في حل 2@ أعلى كفاءة للتحويل الضوئي بالمقارنة مع TNTAs الأخر.
Received 16/9/2019, Accepted 1/4/2020, Published 1/12/2020
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Fukuda HM K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Am Assoc Adv Sci. 1995;268(5216):1466–1468.
Liu S, Tang Z, Sun Y, Colmenares C, Xu Y. One-dimension-based spatially ordered architectures for solar energy conversion. Chem. Soc. Rev. 2015;44(15):5053–5075.
Guo S, Deng Z, Li M, Jiang B, Tian C, Pan Q. Hydrogen Evolution Catalysts Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro- nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution Angewandte. Angew Chem IntEd. 2016;55:1830–1834.
Burda C, Chen X, Narayanan R, El-sayed MA. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005; 105:1025-1102.
Lou XW, Archer LA, Yang Z. Hollow micro‐/nanostructures: Synthesis and applications. Adv. Mater. 2008 Nov 3;20(21):3987-4019.
Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One‐dimensional nanostructures: synthesis, characterization, and applications. Adv Mater.2003;(5):353–89.
Holi AM, Zainal Z, Ayal AK, Chang SK, Lim HN, Talib ZA, Yap CC. Effect of heat treatment on photoelectrochemical performance of hydrothermally synthesised Ag2S/ZnO nanorods arrays. Chem. Phys. Lett. 2018 Oct 16;710:100-7.
Ghicov A, Schmuki P. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. Chem Commun (Camb). 2009;2791–808.
Ayal AK. Enhanced photocurrent of titania nanotube photoelectrode decorated with CdS nanoparticles. Baghdad Sci J. 2018;15(1): 57-62.
Momeni MM, Ghayeb Y. Fabrication , characterization and photoelectrochemical performance of chromium-sensitized titania nanotubes as efficient photoanodes for solar water splitting. J Solid State Electrochem. 2016;20:683–689.
Foong BTRB, Shen Y, Hu X, Sellinger A. Template-Directed Liquid ALD Growth of TiO2 Nanotube Arrays : Properties and Potential in Photovoltaic Devices. Adv Funct Mater. 2010;20:1390–1396.
Dong J, Han J, Liu Y, Nakajima A, Matsushita S, Wei S. Defective Black TiO2 Synthesized via Anodization for Visible-Light Photocatalysis. ACS Appl Mater Interfaces. 2014;660:1385−1388.
Hahn R, Macak JM, Schmuki P. Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochemistry Communications; 2007;9:947–952.
Kong J, Song C, Zhang W, Xiong Y, Wan M. Enhanced visible-light-active photocatalytic performances on Ag nanoparticles sensitized TiO2 nanotube arrays. Superlattices Microstruct. 2017;109: 579-587.
Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, et al. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11:3–18.
Ayal AK, Zainal Z, Lim H-N, Talib ZA, Lim Y-C, Chang S-K, et al. Photocurrent enhancement of heat treated CdSe-sensitized titania nanotube photoelectrode. Opt Quantum Electron. 2017;49(4):1–11.
D I Naranjo, S J García-Vergara B. Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation. J Phys Conf Ser. 2017;935:0–5.
Li DG, Chen DR, Wang JD, Liang P. Effect of acid solution , fluoride ions , anodic potential and time on the microstructure and electronic properties of self-ordered TiO2 nanotube arrays. Electrochim Acta. 2016;207:152–163.
Lai Y, Lin L, Pan F, Huang J, Song R, Huang Y. Bioinspired Patterning with Extreme Wettability Contrast on TiO2 Nanotube Array Surface : A Versatile Platform for Biomedical Applications. small. 2013;17:2945–2953.
Bauer S, Pittrof A, Tsuchiya H, Schmuki P. Size-effects in TiO2 nanotubes : Diameter dependent anatase/ rutile stabilization. Electrochem commun. 2011;13(6):538–541.
Ayal AK, Zainal Z, Lim H-N, Talib ZA, Lim Y-C, Chang S-K, et al. Electrochemical deposition of CdSe-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance for solar cell application. J Mater Sci Mater Electron. 2016;27(5):5204–5210.
Macak JM, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 2005 Nov 18;44(45):7463-5.
Nanotubes OT, Lim Y, Zainal Z, Hussein MZ, Tan W. Effect of Electrolyte Composition in Electrochemical Synthesis of Self Organized TiO2 Nanotubes. Adv Mat Res. 2012;364:298–302.
Mohamed AE, Kasemphaibulsuk N, Rohani S, Barghi S. Fabrication of Titania Nanotube Arrays in Viscous Electrolytes. J Nanosci Nanotechnol. 2010 Mar 1;10(3):1998-2008.
Ayal AK, Lim YC, Farhan AM. Sensitization of Mn with CdS nanoparticles via electrochemical deposition technique for photocurrent enhancement of nanomaterial’s-sensitized photoelectrochemical cells. RES CHEM INTERMEDIAT 2018 Dec 1;44(12):7231-40.
Lim Y-C, Zainal Z, Tan W-T, Hussein MZ. Anodization Parameters Influencing the Growth of Titania Nanotubes and Their Photoelectrochemical Response. Int J Photoenergy. 2012;2012:1–9.