منهج تعليمي شبه آلي للإشراف باستخدام خوارزمية K-Means لمنع هجوم دفق حزمة حزم رأس الاندفاع في شبكة تبديل الانفجارات البصرية
محتوى المقالة الرئيسي
الملخص
شبكة تبديل الاندفاع البصري (OBS) هي تقنية اتصال بصري من الجيل الجديد. في شبكة OBS ، ترسل عقدة الحافة أولاً حزمة تحكم ، تسمى حزمة رأس الاندفاع (BHP) التي تحتفظ بالموارد اللازمة لدفعة البيانات القادمة (DB). بمجرد اكتمال الحجز ، تبدأ قاعدة البيانات بالتحرك إلى وجهتها من خلال المسار المحجوز. هناك هجوم بارز على شبكة OBS هو هجوم فيضان BHP حيث ترسل عقدة الحافة BHPs لحجز الموارد ، ولكن في الواقع لا ترسل قاعدة البيانات المرتبطة بها. نتيجة لذلك ، يتم إهدار الموارد المحجوزة وعندما يحدث ذلك على نطاق واسع بما فيه الكفاية ، فقد يحدث رفض الخدمة (DoS). في هذه البحث ، نقترح طريقة شبه آلية للتعلم باستخدام خوارزمية الوسائل k ، لاكتشاف العقد الخبيثة في شبكة OBS. تم تدريب النموذج شبه المراقب المقترح والتحقق من صحته باستخدام بيانات كمية صغيرة من مجموعة بيانات مختارة. تُظهر التجارب أن النموذج يمكن أن يصنف العقد إلى فصول تتصرف أو لا تتصرف بدقة 90٪ عند التدريب باستخدام 20٪ فقط من البيانات. عندما يتم تصنيف العقد إلى فصول تتصرف ، لا تتصرف، وربما لا تتصرف ، فإن النموذج يظهر دقة 65.15 ٪ و 71.84 ٪ إذا تم تدريبه بنسبة 20 ٪ و 30 ٪ من البيانات على التوالي. مقارنة مع بعض الأعمال البارزة كشفت أن النموذج المقترح يتفوق عليها في كثير من النواحي.
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.