تحسين تحمل الخطأ في أنظمة تحديد المواقع القائمة على إنترنت الأشياء عن طريق التقدم بطلب للتكرار في طبقة جهاز التحكم

محتوى المقالة الرئيسي

Nawzad K. Al-Salihi

الملخص

               في السنوات الأخيرة ، ازداد انتشار تطبيقات تحديد المواقع للأنظمة القائمة على إنترنت الأشياء (IoT) بشكل متزايد ، ووجدت استخدامات في تتبع الأنشطة اليومية للأطفال والمسنين وتتبع المركبات. من وجهة نظر واحدة ، قد تحتوي البيانات التي تم الحصول عليها من الأنظمة القائمة على نظام تحديد المواقع العالمي (GPS) على خطأ ، مع مراعاة هذه العوامل ، تعتمد الطريقة المقترحة لهذه الدراسة على تطبيق تحديد المواقع القائم على إنترنت الأشياء واستبدال استخدام إنترنت الأشياء بدلاً من نظام تحديد المواقع العالمي (GPS). ومع ذلك ، لا يمكن أن يكون هذا سببًا لعدم استخدام نظام تحديد المواقع العالمي (GPS) ، ولتعزيز الموثوقية ، يمكننا تطبيق مجموعة متوازية من النظام الحديث والأساليب التقليدية في وقت واحد. على الرغم من أنه يمكن الوصول إلى إشارات نظام تحديد المواقع العالمي (GPS) فقط في الأماكن المفتوحة ، فإن أجهزة نظام تحديد المواقع العالمي (GPS) معرضة للخطأ في المقام الأول عندما يكون جهاز الاستقبال موجودًا في منطقة مدنية ، بسبب الازدحام والتداخل المحتمل. تقدم النتيجة نموذجًا قائمًا على التكرار لتحسين تحمل الأخطاء لأنظمة تحديد المواقع القائمة على إنترنت الأشياء. تُظهر نتائج المحاكاة تحسنًا بنسبة 22.5٪ في تحمل الأخطاء لنظام تحديد المواقع القائم على إنترنت الأشياء بعد تطبيق آلية التحقق المقترحة وتحسين 77.4٪ في هذا التسامح بعد التقدم للحصول على تكرار أكثر تكلفة للوحدة النمطية.


 

تفاصيل المقالة

كيفية الاقتباس
1.
تحسين تحمل الخطأ في أنظمة تحديد المواقع القائمة على إنترنت الأشياء عن طريق التقدم بطلب للتكرار في طبقة جهاز التحكم. Baghdad Sci.J [انترنت]. 1 ديسمبر، 2021 [وثق 23 يناير، 2025];18(4):1303. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4942
القسم
article

كيفية الاقتباس

1.
تحسين تحمل الخطأ في أنظمة تحديد المواقع القائمة على إنترنت الأشياء عن طريق التقدم بطلب للتكرار في طبقة جهاز التحكم. Baghdad Sci.J [انترنت]. 1 ديسمبر، 2021 [وثق 23 يناير، 2025];18(4):1303. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4942

المراجع

Rodríguez-Puente R, Lazo-Cortés MS. Algorithm for shortest path search in Geographic Information Systems by using reduced graphs. SpringerPlus 2 [Internet]. 2013 Jul [cited 2020 Jan 12];2(291). Available from: https://rdcu.be/b5zIz DOI: 10.1186/2193-1801-2-291.

Pianini D, Salvaneschi G. Proceedings First Workshop on Architectures, Languages and Paradigms for IoT. arXiv preprint arXiv:1802.00976. 2018 Feb 3; 264:17-1.

Qadir QM, Rashid TA, Al-Salihi NK, Ismael B, Kist AA, Zhang A. Low Power Wide Area Networks: A Survey of Enabling Technologies, Applications and Interoperability Needs, IEEE Access [Internet]. 2018 Nov [cited 2020 Jun 19];6:77454-77473. Available from: https://ieeexplore.ieee.org/abstract/document/8550663 DOI:10.1109/ACCESS.2018.2883151.

Nath RK, Bajpai R, Thapliyal H. IoT based indoor location detection system for smart home environment. IEEE International Conference on Consumer Electronics (ICCE). 2018 Jan: 3-1.

Ellis B. Real - Time Analytics: Techniques to analyze and visualize streaming data. Wiley Publishing; 2014. 432 p.

Kaiwartya O, Abdullah A, Cao Y, Lloret J, Kumar S, Shah R, et al. Virtualization in Wireless Sensor Networks: Fault Tolerant Embedding for Internet of Things. IEEE Internet of Things Journal. 2018 Apr;5(2):580-571.

Ngu AH, Gutierrez M, Metsis V, Nepal S, Sheng QZ. IoT Middleware: A Survey on Issues and Enabling Technologies, IEEE Internet of Things Journal. 2017 Feb;4(1):20-1.

Silva BN, Khan M, Han K. Internet of Things: A Comprehensive Review of Enabling Technologies, Architecture, and Challenges. IEEE Technical Review; 2017 Feb;35(2):220-205.

Zhao K, Ge L. A survey on the Internet of things security. Computational Intelligence and Security (CIS). 9th International Conference. 2013 Dec. 667-663.

Mukherjee M, Adhikary I, Mondal S, Mondal AK, Pundir M, Chowdary V. A vision of IoT: Applications, Challenges, and Opportunities with Dehradun Perspective. Proceeding of International Conference on Intelligent Communication. Springer. 2017 Sep;479:559-553.

Saini HS, Srinivas T, Vinod Kumar DM, Chandragupta Mauryan KS. (Eds.). Innovations in Electrical and Electronics Engineering. Springer; 2020. 865.

Casado-Vara R, De la Prieta F, Rodriguez S, Sitton I, Calvo-Rolle JL, Venayagamoorthy GK, et al. Adaptive Fault-Tolerant Tracking Control Algorithm for IoT Systems: Smart Building Case Study. Springer. 2019 May;950:490-481.

Lu X, Liu J, Zhao H. Collaborative Target Tracking of IoT Heterogeneous Nodes. Measurement, Elsevier. 2019 Dec;147.

Song F, Zhu M, Zhou Y, You I, Zhang H. Smart Collaborative Tracking for Ubiquitous Power IoT in Edge-Cloud Interplay Domain. IEEE Internet of Things Journal. 2019 Jul;7(7):6055-6046.

Aftab M, Chau SCK, Shenoy P. Efficient Online Classification and Tracking on Resource-constrained IoT Devices. ACM Transaction of Internet of Things. 2020 Apr.

Chew SH, Chong PA, Gunawan E, Goh KW, Kim Y, Soh CBA. Hybrid Mobile-based Patient Location Tracking System for Personal Healthcare Applications. Conf Proc IEEE Eng Med Biol Soc. 2006:5191-5188.

Ireland D, McBride S, Liddle J, Chenery H. Towards Quantifying the Impact of Parkinson’s Disease Using GPS and Lifespace Assessment. 6th International Conference on Biomedical Engineering and Informatics. 2013 Dec: 569-564.

Aziz K, Tarapiah S, Ismail SH, Atalla S. Smart Real-Time Healthcare Monitoring and Tracking System using GSM/GPS Technologies. ICBDSC. 2016 Apr:7-1.

Nelson VP. For IoT, alternative location services are better than GPS. Network World, 2018. [cited, Sept 30] Available from: https://www.networkworld.com/article/3278592/internet-of-things/for-iot-alternative-location-services-are-better-than-gps.html

Rullo A, Serra E, Lobo J. Redundancy as a Measure of Fault-Tolerance for the Internet of Things: A Review. Springer International Publishing; 2019. Chapter 2, Policies and Autonomy in Federated and Distributed Environments; p.206-202.

Vial J, Bosio A, GirardP, Landrault C, Pravossoudovitch S, Virazel A. Using TMR Architectures for Yield Improvement. International Symposium on Defect and Fault Tolerance of VLSI Systems. IEEE Computer Society, 2008 Oct:15-7.

Kumari P, Kaur P. A survey of fault tolerance in cloud computing. Journal of King Saud University. Computer and Information Sciences [Internet]. 2018 Oct [cited 2020 Jun 17];30(4):560-431. Available from: https://www.sciencedirect.com/science/article/pii/S1319157818306438 DOI:10.1016/j.jksuci.2018.09.021

Gokhroo MK, Govil MC, Pilli ES. Detecting and mitigating faults in cloud computing environment. IEEE International Conference. 2017 Jul:9-1.

Cheraghlou NM, Khadem-Zadeh A, Haghparast M. A survey of fault tolerance architecture in cloud computing. J. Netw. Comput. Appl. 2016 Feb; 61:p.91–81.

Johnson BW. Design and Analysis of Fault Tolerant Digital Systems. New York: Addison Wesley; 1998. 640 p.

Laprie JC. Dependable computing and fault tolerance: concepts and terminology. Digest of Papers FTCS-15. IEEE. 1985 Jun: 11-2.

Fu H, Cai M, FangL, Liu P, Dong J. Research on RTOS-Integrated TMR for Fault Tolerant Systems. 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing. IEEE. 2007 Aug: 755-750.

Nelson VP. Fault Tolerant Computing: Fundamental Concepts. Computer IEEE. 1990 Jul;23(7):25-19.

Shamshiri RR, Kalantari F, Ting KC, Thorp KR, Hameed IA, Weltzien C, et al. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int J Agric & Biol Eng, 2018 Jan; 11(1): 1–22.