الحل العددي لأنظمة فضاء الحالة باستخدام طريقة موجات هار ويفلت
محتوى المقالة الرئيسي
الملخص
في هذا البحث، تم استخدام طريقة الموبجات الشعرية لإيجاد حل تقريبي لأنظمة فضاء الحالة الخطية. وان تقنية الحل هي تحويل أنظمة فضاء الحالة الخطية إلى نظام من المعادلات الخطية للفاصل الزمني من 0 إلى . كما يمكن تعزيز دقة متغيرات الحالة عن طريق زيادة دقة موجات هار ويفلت. تم تطبيق الطريقة المقترحة لأمثلة مختلفة وتم توضيح نتائج المحاكاة بالرسوم البيانية ومقارنتها بالحل الدقيق.
Received 29/4/2020
Accepted 9/11/2020
Published Online First 20/7/2021
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Koç A, Bartan B, Gundogdu E, Çukur T, Ozaktas HM. Sparse representation of two-and three-dimensional images with fractional Fourier, Hartley, linear canonical, and Haar wavelet transforms. EXPERT SYST APPL.. (2017) Jul 1;77:247-55.
Nievergelt, Y. Wavelets made easy, Vol. 174. Boston, MA: Birkhäuser, 1999.
Spitsyn VG, Bolotova YA, Phan NH, Bui TT. Using a Haar wavelet transform, principal component analysis and neural networks for OCR in the presence of impulse noise. Computer Optics. 2016 Jan 1;40(2):249-57.
Rani MM, Chitra P. A hybrid medical image coding method based on haar wavelet transform and particle swarm optimization technique. IJPAM. 2018;118(8): pp. 3056-67.
Shahsavaran A. Haar wavelet method to solve Volterra integral equations with weakly singular kernel by collocation method. Appl. Math. Sci. 2011;5(65):3201-10.
Lepik Ü, Tamme E. Application of the Haar wavelets for solution of linear integral equations. Proceedings, 2004 Jul; pp. 494:507.
Mula S, Gogineni VC, Dhar AS. Algorithm and VLSI architecture design of proportionate-type LMS adaptive filters for sparse system identification. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2018 Apr 27; 26(9):1750-62.
Babaaghaue, A, Maleknejad, K. Numerical solutions of nonlinear two-dimensional partial Volterra integro-differential equations by Haar wavelet. Comput. Appl. Math. 2017; 317: pp. 643-651.
Arbabi, S, Nazari, A, Darvishi, M T. A two-dimensional Haar wavelets method for solving systems of PDEs. Appl. Math. Comput . 2017; 292: pp. 33-46.
Hsiao CH, Wang WJ. Optimal control of linear time-varying systems via Haar wavelets. J Optim Theory Appl. 1999 Dec 1;103(3):641-55.
Prabakaran K, Balaji G, Vengataasalam S. Numerical analysis of state space systems using single term Haar wavelet series. Electron. Res. Announ. AMS. 2014;8:4125-35.
Abuhamdia T, Taheri S. Wavelets as a tool for systems analysis and control. J VIB CONTROL. 2017 May;23(9):1377-416.
Karimi HR, Moshiri B, Lohmann B, Maralani PJ. Haar wavelet-based approach for optimal control of second-order linear systems in time domain. J Dyn. Control Syst. 2005 Apr 1;11(2):237-52.
Abdul K V, Monica M. Analysis of fractional Systems using Haar wavelet. IJITEE. 2019; 8(9s): 455-459.
Ali MR, Baleanu D. Haar wavelets scheme for solving the unsteady gas flow in four-dimensional. Therm. Sci. 2019; 00: 292-292.
Swaidan W, Hussin A. Feedback control method using Haar wavelet operational matrices for solving optimal control problems. ABSTR APPL ANAL. 2013; 1-8: 229. doi:10.1155/2013/240352 .
Chen CF, Hsiao CH. Haar wavelet method for solving lumped and distributed-parameter systems. IEE P-CONTR THEOR AP. 1997 Jan 1;144(1):87-94.
Brewer J. Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst. 1978 Sep;25(9):772-81.
Xue, D, Chen Y. Solving applied mathematical problems with MATLAB. CRC Press. 2011.
Boyce WE, DiPrima RC, Meade DB. Elementary differential equations. John Wiley & Sons; 2017 Aug 14.
Al-Khaled K. Existence and Approximation of Solutions for Systems of First Order Differential Equations. Nonlinear Dyn. Syst. Theory. 2018;18(4):319-30.
Ogata K, Yang Y. Modern control engineering. Upper Saddle River. NJ: Prentice hall; 2010 Sep.