التخليق الأخضر للجسيمات النانوية حديد/نحاس كمحفزات في التفاعلات الشبيهة بالفنتون لغرض إزالة الصبغة البرتقالية G

المؤلفون

  • Ahmed K Hassan مركز بحوث البيئة والمياه، وزارة العلوم والتكنولوجيا، بغداد، العراق https://orcid.org/0000-0003-0608-2839
  • Mohammed A Atiya كلية الهندسة الخوارزمي، جامعة بغداد، بغداد، العراق https://orcid.org/0000-0001-8967-9045
  • Imad M Luaibi كلية الهندسة الخوارزمي، جامعة بغداد، بغداد، العراق https://orcid.org/0000-0002-3784-4843

DOI:

https://doi.org/10.21123/bsj.2022.6508

الكلمات المفتاحية:

شبيهة بالفنتون، التخليق الاخضر، جسيمات الحديد/نحاس النانوية، الحركية، الصبغة البرتقالية G

الملخص

تدرس هذه الورقة البحثية استخدام طريقة صديقة للبيئة وغير مكلفة لإزالة الصبغة البرتقالية G (OG) من المحلول المائي، حيث تم استخدام مستخلص أوراق شجرة الفيكس لغرض التخليق الأخضر لجسيمات الحديد/نحاس ثنائية الفلز النانوية (G-Fe/Cu-NPs). بعد أن تم تحضير G-Fe/Cu-NPs تم تشخيصها باستخدام مجهر الماسح الالكتروني، BET، مجهر القوة الذرية، مطياف الطاقة المشتتة، مطيافية الأشعة تحت الحمراء، و مقياس زيتا. أظهرت نتائج التشخيص بأن شكل G-Fe/Cu-NPs كان مستدير شبه كروي ويتراوح الحجم بين 32-59 نانومتر بينما كانت مساحتها السطحية 4.452 م2/غم. فيما بعد اُستخدمت الجسيمات النانوية الناتجة كعامل مساعد في تفاعلات الأكسدة الشبيهة بالفنتون. حيث أن كفاءة تحلل صبغة OG اعتمدت بشكل كبير على تركيز الهيدروجين بيروكسايد (1.7-5.28 ملي مولاري)، كمية العامل المساعد (0.4-1.6 غم/لتر)، درجة الحامضية (2-7)، تركيز OG الابتدائي (25-75 ملغم/لتر) ودرجة الحرارة (20-50 درجة مئوية). أظهرت التجارب الدفعية أن 94.8% لتركيز 50 ملغم/لتر من صبغة OG تمت ازالته عند الظروف المثلى للهيديروجين بيروكسايد، كمية العامل المساعد، درجة الحامضية، ودرجة الحرارة والتي كانت 3.52 ملي مولاري،1غم/لتر، 3، و 40 درجة مئوية على التوالي خلال زمن مقداره 30 دقيقة. أيضاً أظهرت نتائج دراسة النماذج الحركية بأن ازالة صبغة OG تتبع نموذج  حركي من الدرجة الثانية. أخيراً، تم دراسة الديناميكية الحرارية للتفاعل وخلُصت إلى ان التفاعل ماصاً للحرارة وله طاقة تنشيط مقدارها 29.725 كيلوجول/مول.

المراجع

Rosly NZ, Abdullah AH, Ahmad Kamarudin M, Ashari SE, Alang Ahmad SA. Adsorption of Methylene Blue Dye by Calix[6]Arene-Modified Lead Sulphide (Pbs): Optimisation Using Response Surface Methodology. Int J Environ Res Public Health. 2021; 18(2), 379. oi:10.3390/ijerph18020397.

Cai Z, Sun Y, Liu W, Pan F, Sun P, Fu J. An overview of nanomaterials applied for removing dyes from wastewater. Environ Sci Pollut Res. 2017; 24(19): 15882–15904.

Gičević A, Hindija L, Karačić A. Toxicity of azo dyes in pharmaceutical industry. Springer International Publishing: IFMBE Proc. 2020; 73(1): 581–587.

Imam SS, Muhammad AI, Babamale HF, Zango ZU. Removal of Orange G Dye from Aqueous Solution by Adsorption: A Short Review. J Environ Treat Tech. 2021; 9(1): 318–327.

Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: A review. J Environ Chem Eng. 2018; 6(4):4676–4697.

Atiya MA, M-Ridha MJ, Saheb MA. Removal of aniline blue from textile wastewater using electrocoagulation with the application of the response surface approach. Iraqi J. Sci. 2020; 61(11): 2797–2811.

Önal ES, Yatkin T, Ergüt M, Özer A. Green Synthesis of Iron Nanoparticles by Aqueous Extract of Eriobotrya japonica Leaves as a Heterogeneous Fenton-like Catalyst: Degradation of Basic Red 46. Int. J Chem Eng Appl. 2017; 8(5): 327–333.

Hassan AK, Al-Kindi GY, Ghanim D. Green synthesis of bentonite-supported iron nanoparticles as a heterogeneous Fenton-like catalyst: Kinetics of decolorization of reactive blue 238 dye. Water Sci Eng. 2020; 13(4): 286–298.

AL-Saade K, Al- Saidi S, Juad H. Degradation of Brilliant Green by Using a bentonite Clay- Based Fe Nano Composite Film as a Heterogeneous Photo- Fenton Catalyst. Baghdad Sci J. 2016; 13(3): 524–530.

Wang D, Zou J, Cai H, Huang Y, Li F, Cheng Q. Effective degradation of Orange G and Rhodamine B by alkali-activated hydrogen peroxide: roles of HO 2− and O 2·−. Environ. Sci. Pollut. Res. 2019; 26(2): 1445–1454.

Li R, Gao Y, Jin X, Chen Z, Megharaj M, Naidu R. Fenton-like oxidation of 2,4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst. J Colloid Interface Sci. 2015; 438(1): 87–93.

Pasinszki T, Krebsz M. Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials. 2020; 10(5): 917 doi:10.3390/nano10050917.

Ma P, Liu Q, Liu P, Li H, Han X, Liu L et al. Green synthesis of Fe/Cu oxides composite particles stabilized by pine needle extract and investigation of their adsorption activity for norfloxacin and ofloxacin. J Dispers Sci Technol 2021; 42(9): 1350-1367

Alwash A. The green synthesize of zinc oxide catalyst using pomegranate peels extract for the photocatalytic degradation of methylene blue dye. Baghdad Sci. J. 2020; 17(3): 787–794.

Abd El-Aziz HM, Farag RS, Abdel-Gawad SA. Removal of contaminant metformin from water by using Ficus benjamina zero-valent iron/copper nanoparticles. Nanotechnol Environ Eng 2020; 5(3): 1–9.

Al-Qahtani KM. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. Egypt J Aquat Res 2017; 43(4): 269–274.

Puthukkara P AR, Jose T S, S D lal. Plant mediated synthesis of zero valent iron nanoparticles and its application in water treatment. J Environ Chem Eng. 2021; 9(1): (1-77) doi:10.1016/j.jece.2020.104569.

Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J Hazard. Mater. 2014; 267(4): 194–205.

Gopal G, Sankar H, Natarajan C, Mukherjee A. Tetracycline removal using green synthesized bimetallic nZVI-Cu and bentonite supported green nZVI-Cu nanocomposite: A comparative study. J. Environ. Manage. 2020; 254(2): 109812 doi:10.1016/j.jenvman.2019.109812.

Dhruval SR, Pai N, Dhanwant SS, Hussein B, Nayak S, Rao CV et al. Rapid synthesis of antimicrobial Fe/Cu alloy nanoparticles using Waste Silkworm Cocoon extract for cement mortar applications. Adv Nat Sci Nanosci Nanotechnol. 2020; 11(2): 025006 doi:10.1088/2043-6254/ab8790.

Galdames A, Ruiz-Rubio L, Orueta M, Sánchez-Arzalluz M, Vilas-Vilela JL. Zero-valent iron nanoparticles for soil and groundwater remediation. Int J Environ Res Public Health 2020; 17(16): 1–23.

Abdel-Aziz HM, Farag RS, Abdel-Gawad SA. Removal of caffeine from aqueous solution by green approach using Ficus Benjamina zero-valent iron/copper nanoparticles. Adsorpt Sci Technol. 2020; 38(9-10): 325–343.

Abdel-Aziz HM, Farag RS, Abdel-Gawad SA. Carbamazepine Removal from Aqueous Solution by Green Synthesis Zero-Valent Iron/Cu Nanoparticles with Ficus Benjamina Leaves’ Extract. Int J Environ Res. 2019; 13(5): 843–852.

Wang J, Liu C, Li J, Luo R, Hu X, Sun X et al. In-situ incorporation of iron-copper bimetallic particles in electrospun carbon nanofibers as an efficient Fenton catalyst. Appl. Catal. B Environ. 2017; 207(8): 316–325.

Suvarna AR, Shetty A, Anchan S, Kabeer N, Nayak S. Cyclea peltata Leaf Mediated Green Synthesized Bimetallic Nanoparticles Exhibits Methyl Green Dye Degradation Capability. Bionanoscience. 2020; 10(3): 606–617.

Mohamed EA. Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon. 2020; 6(1): e03123. doi:10.1016/j.heliyon.2019.e03123.

Elahimehr Z, Nemati F, Elhampour A. Synthesis of a magnetic-based yolk-shell nano-reactor: A new class of monofunctional catalyst by Cu0-nanoparticles and its application as a highly effective and green catalyst for A3 coupling reaction. Arab J Chem. 2020; 13(1): 3372–3382.

Khashij M, Dalvand A, Mehralian M, Ebrahimi AA, Khosravi R. Removal of reactive black 5 dye using zero valent iron nanoparticles produced by a novel green synthesis method. Pigment Resin Technol. 2020; 49(3): 215–221.

Nasrollahzadeh M, Sajadi SM, Khalaj M. Green synthesis of copper nanoparticles using aqueous extract of the leaves of Euphorbia esula L and their catalytic activity for ligand-free Ullmann-coupling reaction and reduction of 4-nitrophenol. Rsc Adv. 2014; 4(88): 47313–47318.

Shaker Ardakani L, Alimardani V, Tamaddon AM, Amani AM, Taghizadeh S. Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: methyl orange dye degradation and antimicrobial properties. Heliyon. 2021; 7(2): e06159 . doi:10.1016/j.heliyon.2021.e06159.

Wang X, Jiang C, Hou B, Wang Y, Hao C, Wu J. Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere. 2018; 206(17): 587–596.

Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R. Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci. 2013; 410(22): 67–73.

Kakavandi B, Takdastan A, Pourfadakari S, Ahmadmoazzam M, Jorfi S. Heterogeneous catalytic degradation of organic compounds using nanoscale zero-valent iron supported on kaolinite: Mechanism, kinetic and feasibility studies. J Taiwan Inst Chem. Eng. 2019; 96(3): 329–340.

Giwa ARA, Bello IA, Olabintan AB, Bello OS, Saleh TA. Kinetic and thermodynamic studies of fenton oxidative decolorization of methylene blue. Heliyon. 2020; 6(8): e04454 doi: 10.1016/j.heliyon.2020.e04454

N, Benamor A, Nasser MS, Ba-Abbad MM, El-Naas MH, Mohammad AW. Effective Heterogeneous Fenton-Like degradation of Malachite Green Dye Using the Core-Shell Fe3O4@SiO2 Nano-Catalyst. ChemistrySelect. 2021; 6(4): 865–875.

Sukla Baidya K, Kumar U. Adsorption of brilliant green dye from aqueous solution onto chemically modified areca nut husk. South African J Chem Eng. 2021; 35(1): 33–43.

Nadeem N, Zahid M, Tabasum A, Mansha A, Jilani A, Bhatti IA et al. Degradation of reactive dye using heterogeneous photo-Fenton catalysts: ZnFe2O4 and GO-ZnFe2O4 composite. Mater Res Express. 2020; 7(1): 015519 doi:10.1088/2053-1591/ab66ee.

Park JH, Wang JJ, Xiao R, Tafti N, DeLaune RD, Seo DC. Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst. Bioresour Technol 2018; 249(3): 368–376.

Xavier S, Gandhimathi R, Nidheesh PV, Ramesh ST. Comparison of homogeneous and heterogeneous Fenton processes for the removal of reactive dye Magenta MB from aqueous solution. Desalin Water Treat. 2015; 53(1): 109–118.

Bao C, Zhang H, Zhou L, Shao Y, Ma J, Wu Q. Preparation of copper doped magnetic porous carbon for removal of methylene blue by a heterogeneous Fenton-like reaction. Rsc Adv. 2015; 5(88): 72423–72432.

Ergüt M, Özer A. Heterogeneous Fenton-like decolorization of Procion Red MX-5B with iron-alginate gel beads as an effective catalyst. The Glas. 2019; 13(4): 297–304.

Ahmad ARD, Imam SS, Oh W Da, Adnan R. Fe3O4-zeolite hybrid material as hetero-fenton catalyst for enhanced degradation of aqueous ofloxacin solution. Catalysts. 2020; 10(11): 1–19.

Hassan AK, Rahman MM, Chattopadhay G, Naidu R. Kinetic of the degradation of sulfanilic acid azochromotrop (SPADNS) by Fenton process coupled with ultrasonic irradiation or L-cysteine acceleration. Environ Technol Innov. 2019; 15(3): 100380 doi:10.1016/j.eti.2019.100380.

Hashemian S. Fenton-like oxidation of malachite green solutions: Kinetic and thermodynamic study. J Chem. 2013; 2013(4): 1-7 doi:10.1155/2013/809318.

Hussain S, Aneggi E, Goi D. Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: a review. Environ. Chem. Lett. 2021; 19(3): 2405–2424.

Durgut M, Kaya Ş, AŞÇi Y. Using Iron-Containing Metal Oxide as Catalyst for Heterogeneous Fenton Process in Textile Industry Wastewater. J ESOGU Engin Arch Fac. 2021, 29(1), 110-117.

Liang X, Zhong Y, He H, Yuan P, Zhu J, Zhu S et al. The application of chromium substituted magnetite as heterogeneous Fenton catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J. 2012; 191(10): 177–184.

Emami F, Tehrani-Bagha AR, Gharanjig K, Menger FM. Kinetic study of the factors controlling Fenton-promoted destruction of a non-biodegradable dye. Desalination. 2010; 257(1-3): 124–128.

Santana CS, Ramos MDN, Velloso CCV, Aguiar A. Kinetic evaluation of dye decolorization by fenton processes in the presence of 3-hydroxyanthranilic acid. Int. J. Environ. Res. Public Health. 2019; 16(9): 1602 doi:10.3390/ijerph16091602.

Youssef NA, Shaban SA, Ibrahim FA, Mahmoud AS. Degradation of methyl orange using Fenton catalytic reaction. Egypt J Pet. 2016; 25(3): 317–321.

El Haddad ME, Regti A, Laamari MR, Mamouni R, Saffaj N. Use of fenton reagent as advanced oxidative process for removing textile dyes from aqueous solutions. J Mater Environ Sci. 2014; 5(3): 667–674.

Lal K, Garg A. Utilization of dissolved iron as catalyst during Fenton-like oxidation of pretreated pulping effluent. Process Saf Environ Prot. 2017; 111(7): 766–774.

التنزيلات

منشور

2022-12-01

إصدار

القسم

article

كيفية الاقتباس

1.
التخليق الأخضر للجسيمات النانوية حديد/نحاس كمحفزات في التفاعلات الشبيهة بالفنتون لغرض إزالة الصبغة البرتقالية G. Baghdad Sci.J [انترنت]. 1 ديسمبر، 2022 [وثق 18 مايو، 2024];19(6):1249. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6508

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.