تصنيف صور الرنين المغناطيسي للثدي بالاعتماد على تحسين الصور واستخراج الخواص العميقة

المؤلفون

  • Ali M. Hasan جامعة النهرين، كلية الطب، بغداد، العراق https://orcid.org/0000-0001-9151-6958
  • Asaad F. Qasim وزارة التعليم العالي والبحث العلمي، دائرة الدراسات والتخطيط والمتابعة، بغداد، العراق https://orcid.org/0000-0003-2451-2871
  • Hamid A. Jalab كلية علوم الحاسبات وتكنولوجيا المعلومات، جامعة مالايــا، كوالالمبور، ماليزي https://orcid.org/0000-0002-4823-6851
  • Rabha W. Ibrahim كلية الرياضيات والاحصاء، جامعة Ton Duc Thang، فيتنام

DOI:

https://doi.org/10.21123/bsj.2022.6782

الكلمات المفتاحية:

مسح الثدي بالرنين المغناطيسي، التصنيف، الشبكات العصبية الملتفّة، الخواص العميقة، ذاكرة طويلة قصير الامد.

الملخص

سرطان الثدي يعتبر واحد من الامراض القاتلة الشائعة بين النساء في جميع أنحاء العالم. والتشخيص المبكر لسرطان الثدي الكشف المبكر من أهم استراتيجيات الوقاية الثانوية. نظرًا لاستخدام التصوير الطبي على نطاق واسع في تشخيص العديد من الأمراض المزمنة ومراقبتها، فقد تم اقتراح العديد من خوارزميات معالجة الصور على مر السنين لزيادة مجال التصوير الطبي بحيث تصبح عملية التشخيص أكثر دقة وكفاءة. تقدم هذه الدراسة خوارزمية جديدة لاستخراج الخواص العميقة من نوعين من صور الرنين المغناطيسي T2W-TSE و STIR MRI كمدخلات للشبكات العصبية العميقة المقترحة والتي تُستخدم لاستخراج الخواص للتمييز بين فحوصات التصوير بالرنين المغناطيسي للثدي المرضية والصحية. في هذه الخوارزمية، تتم معالجة فحوصات التصوير بالرنين المغناطيسي للثدي مسبقًا قبل خطوة استخراج الخواص لتقليل تأثيرات الاختلافات بين شرائح التصوير بالرنين المغناطيسي، وفصل الثدي الايمن عن الايسر، بالإضافة الى عزل خلفية الصور. وقد كانت أقصى دقة تم تحقيقها لتصنيف مجموعة بيانات تضم 326 شريحة تصوير بالرنين المغناطيسي للثدي 98.77٪. يبدو أن النموذج يتسم بالكفاءة والأداء ويمكن بالتالي اعتباره مرشحًا للتطبيق في بيئة سريرية.

المراجع

Breast cancer facts and figures 2019–2020. Am Cancer Soc: 1-44. Available from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2019-2020.pdf.

Smith R, Brawley O, Wender R. Screening and Early Detection, Principles of Oncology. Am Cancer Soc. 2018: 110-135. Available from: https://doi.org/10.1002/9781119468868.ch11.

AL-Thaweni A, Yousif W, Hassan S. Detection of BRCA1and BRCA2 mutation for Breast Cancer in Sample of Iraqi Women above 40 Years. Baghdad Sci J. 2010; 7 (1): 394-400.

Marcon M, Ciritsis A, Rossi C, Becker A, Berger N, Wurnig M, et al. Diagnostic performance of machine learning applied to texture analysis-derived features for breast lesion characterisation at automated breast ultrasound: a pilot study. Eur Radiol Exp. 2019; 3(1): 44. Available from: https://doi.org/10.1186/s41747-019-0121-6.

Alnafea M. Detection and Diagnosis of Breast Diseases, in Breast Imaging. 2017, IntechOpen Book Series. Available from: http://doi.org/10.5772/intechopen.69898

Nahid A, Kong Y. Involvement of Machine Learning for Breast Cancer Image Classification: A Survey. Comput Math Methods Med. 2017; 2017:3781951. Available from: https://doi.org/10.1155/2017/3781951.

Hussain A, AL-Khafaji A, Ali A, Mohammed H. Study of Certain Biomarkers in Iraqi Female Patients with Breast Cancer. Baghdad Sci J. 2021; 18(4): 1140-1148. Available from: https://doi.org/10.21123/bsj.2021.18.4.1140.

Milosevic M, Jankovic D, Milenkovic A. Stojanov D, Early diagnosis and detection of breast cancer. Technol Health Care. 2018; 26(4): 729-759. Available from: https://content.iospress.com/articles/technology-and-health-care/thc181277

Dalmış M, Vreemann S, Kooi T, Mann R, Karssemeijer N, Gubern A. Fully automated detection of breast cancer in screening MRI using convolutional neural networks. J Med Imaging. 2018; 5(1): 014502. Available from: https://pubmed.ncbi.nlm.nih.gov/29340287/.

Lin C, Rogers C, Majidi S. Fat suppression techniques in breast magnetic resonance imaging: a critical comparison and state of the art. Rep Med. 2015; 8: 37-49. Available from: https://doi.org/10.2147/RMI.S46800

Kilic F, Ogul H, Bayraktutan U, Gumus H, Unal O, Kantarci M, et al. Diagnostic magnetic resonance imaging of the breast. Eurasian J Emerg Med. 2012; 44(2): 106. Available from: https://www.eajm.org//en/diagnostic-magnetic-resonance-imaging-of-the-breast-132589.

Jiménez-Gaona Y, Rodríguez-Álvarez M, Lakshminarayanan V. Deep-Learning-Based Computer-Aided Systems for Breast Cancer Imaging: A Critical Review. Appl Sci. 2020; 10(22): 8298. Available from: https://doi.org/10.3390/app10228298.

Vandeweyer E, Hertens D. Quantification of glands and fat in breast tissue: an experimental determination. Ann Anat. 2002; 184(2): 181-184. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0940960202800164?via%3Dihub

Thomassin I, Trop I, Lalonde L, David J, Péloquin L, Chopier J. Tips and techniques in breast MRI. Diagn Interv Imaging. 2012; 93(11): 828-839. Available from: https://pubmed.ncbi.nlm.nih.gov/23084072/

Hilal S, Hasan H, Hasan A. Magnetic Resonance Imaging Breast Scan Classification based on Texture Features and Long Short-Term Memory Model. Neuro Quantology, 2021; 19(7): 41. Available from: https://www.proquest.com/openview/fc40762cbf3d70d60719e0201b402264/1.pdf?pq-origsite=gscholar&cbl=2035897.

Hasan A, Jalab H, Meziane F, Hasan K, Al-Ahmed A. Combining deep and handcrafted image features for MRI brain scan classification. IEEE Access. 2019; 7: 79959-79967. Available from: https://ieeexplore.ieee.org/document/8736208.

Hasan A, Jalab H, Ibrahim R, Meziane F, AL-Shamasneh A, Obaiys S. MRI brain classification using the quantum entropy LBP and deep-learning-based features. Entropy. 2020; 22(9): 1033. Available from: https://doi.org/10.3390/e22091033.

Jiang Y, Chen L, Zhang H, Xiao X. Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PloS one. 2019; 14(3): e0214587. Available from: https://doi.org/10.1371/journal.pone.0214587.

Dabeer S, Khan M, Islam S. Cancer diagnosis in histopathological image: CNN based approach. Inform Med Unlocked. 2019; 16: 100231. Available from: https://doi.org/10.1016/j.imu.2019.100231.

Xiang Z, Ting Z, Weiyan F, Cong L. Breast Cancer Diagnosis from Histopathological Image based on Deep Learning. Chin. Control Decis. Conf. 2019. IEEE. China. Available from: https://ieeexplore.ieee.org/document/8833431.

Khan S, Islam N, Zahoor J, Din I, Rodrigues J. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit. Lett. 2019; 125: 1-6. Available from: https://doi.org/10.1016/j.patrec.2019.03.022.

Yan R, Ren F, Wang Z, Zhang T, Liu Y, Rao X, et al. Breast cancer histopathological image classification using a hybrid deep neural network. Methods. 2020; 173: 52-60. Available from: https://doi.org/10.1016/j.ymeth.2019.06.014.

Lu W, Wang Z, He Y, Yu H, Xiong N, Jianguo W. Breast Cancer Detection Based on Merging Four Modes Mri Using Convolutional Neural Networks. Proc IEEE Int Conf Acoust Speech Signal Process. 2019. IEEE. United Kingdom. Available from: https://ieeexplore.ieee.org/document/8683149.

Yurttakal A, Erbay H, İkizceli T, Karaçavuş S. Detection of breast cancer via deep convolution neural networks using MRI images. Multimed. Tools Appl. 2020; 79: 15555–15573. Available from: https://link.springer.com/article/10.1007/s11042-019-7479-6.

Zhang Y, Chan S, Park V, Chang K, Mehta S, Kim M, et al. Automatic Detection and Segmentation of Breast Cancer on MRI Using Mask R-CNN Trained on Non–Fat-Sat Images and Tested on Fat-Sat Images. Acad Radiol. 2022;29 Suppl 1(Suppl 1): S135-S144. Available from: https://pubmed.ncbi.nlm.nih.gov/33317911/.

Zebari D, Ibrahim D, Zeebaree D, Haron H, Salih M. Damaševičius R., et al., Systematic Review of Computing Approaches for Breast Cancer Detection Based Computer Aided Diagnosis Using Mammogram Images. Appl Artif Intell. 2021: 1-47. Available from: https://doi.org/10.1080/08839514.2021.2001177.

Lahoura V, Singh H, Aggarwal A, Sharma B, Mohammed M, Damaševičius R, et al. Cloud Computing-Based Framework for Breast Cancer Diagnosis Using Extreme Learning Machine. Diagnostics. 2021; 11(2): 241. Available from: https://doi.org/10.3390/diagnostics11020241.

Bloch B, Jain A, Jaffe C, Data From BREAST-DIAGNOSIS, T C I. Archive. 2020. Available from: http://doi.org/10.7937/K9/TCIA.2015.SDNRQXXR.

Jalab H, Ibrahim R. Fractional Alexander polynomials for image denoising. Signal Process. 2015; 107: 340-354. Available from: https://doi.org/10.1016/j.sigpro.2014.06.004.

Raghunandan K, Shivakumara P, Jalab H, Ibrahim R, Kumar G, Pal U, et al. Riesz fractional based model for enhancing license plate detection and recognition. IEEE Trans Circuits Syst Video Technol .2017; 28(9): 2276-2288. Available from: https://ieeexplore.ieee.org/document/7944571.

Roy S, Shivakumara P, Jalab H, Ibrahim R, Pal U, Lu T. Fractional poisson enhancement model for text detection and recognition in video frames. Pattern Recognit. 2016; 52: 433-447. Available from: https://doi.org/10.1016/j.patcog.2015.10.011.

Ibrahim R, Moghaddasi Z, Jalab H, Rafidah N. Fractional differential texture descriptors based on the machado entropy for image splicing detection. Entropy. 2015; 17(7): 4775-4785. Available from: https://doi.org/10.3390/e17074775.

Hasan A, AL-Jawad M, Jalab H, Shaiba H, Ibrahim R, AL-Shamasneh A. Classification of Covid-19 Coronavirus, Pneumonia and Healthy Lungs in CT Scans Using Q-Deformed Entropy and Deep Learning Features. Entropy. 2020; 22(5): 517. Available from: https://doi.org/10.3390/e22050517.

Al-Shamasneh A, Jalab H, Palaiahnakote S, Obaidellah U, Ibrahim R, El-Melegy M. A new local fractional entropy-based model for kidney MRI image enhancement. Entropy. 2018; 20(5): 344. Available from: https://doi.org/10.3390/e20050344.

Yang X, Baleanu D, Srivastava H. Local fractional integral transforms and their applications. 2015, AP. 1st Edition, Elsevier. Available from: https://doi.org/10.1016/B978-0-12-804002-7.09994-0.

Cicconet M, Hildebrand D, Elliott H. Finding mirror symmetry via registration. arXiv preprint arXiv: 2017; 1611.05971. Available from: https://arxiv.org/abs/1611.05971.

Xia L, Xi S, Yongxia Z, Xiuhui W, Tie-Qiang L. Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet). PloS one. 2020; 15(5): e0232127. Available from: https://doi.org/10.1371/journal.pone.0232127.

Le X, Ho H, Lee G, Jung S. Application of long short-term memory (LSTM) neural network for flood forecasting. Water. 2019; 11(7): 1387. Available from: https://doi.org/10.3390/w11071387.

Jalab H, Hasan A, Magnetic Resonance Imaging Segmentation Techniques of Brain Tumors: A Review. Arch Neurosci. 2019; 6(Brain Mapping): e84920. Available from: https://brief.land/ans/articles/84920.html.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015; 115(3): 211-252. Available from: https://link.springer.com/article/10.1007/s11263-015-0816-y.

Zhou B, Khosla A, Lapedriza A, Torralba A, Oliva A. An image database for deep scene understanding. arXiv preprint arXiv: 2016; 1610.02055. Available from: https://arxiv.org/abs/1610.02055.

Iandola F, Han S, Moskewicz M, Ashraf K, Dally W, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv: 2016; 1602.07360. Available from: https://arxiv.org/abs/1602.07360.

Mai H, Mao Y, Dong T, Tan Y, Huang X, Wu S, et al. The utility of texture analysis based on breast magnetic resonance imaging in differentiating phyllodes tumors from fibroadenomas. Front Oncol. 2019; 9: 1021. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6803552/.

التنزيلات

منشور

2023-02-01

إصدار

القسم

article

كيفية الاقتباس

1.
تصنيف صور الرنين المغناطيسي للثدي بالاعتماد على تحسين الصور واستخراج الخواص العميقة. Baghdad Sci.J [انترنت]. 1 فبراير، 2023 [وثق 11 مايو، 2024];20(1):0221. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6782

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.