خوارزمية سرب الأسماك الاصطناعية المعتمدة على عوامل التنوع لحل مشكلة جدولة ورشة العمل المرنة

محتوى المقالة الرئيسي

Alaa Wagih Abdulqader
https://orcid.org/0000-0002-8591-9416
Sura Mazin Ali
https://orcid.org/0000-0002-0189-5788

الملخص

 تعد خوارزمية سرب الأسماك الاصطناعية (AFSA) واحدة من خوارزميات السرب الذكية الحاسمة. لذا عمل المؤلفون في هذا البحث على تعزيز AFSA عبر مشغلي التنوع (AFSA-DO). سيقوم مشغلو التنوع بإنتاج حلول أكثر تنوعًا لـ AFSA للحصول على قرارات معقولة. تم استخدام AFSA-DO لحل مشاكل جدولة محل العمل المرنة (FJSSP). ومع ذلك ، فإن برنامج FJSSP يمثل مشكلة كبيرة في مجال التحسين وبحوث العمليات حيث تناولت العديد من المقالات البحثية طرق حل هذه المشكلة ، بما في ذلك أشكال ذكاء الأسراب. في هذا البحث ، تم اختبار مجموعة من عينات الهدف FJSSP باستخدام الخوارزمية المحسنة لتأكيد فعاليتها وتقييم تنفيذها. وتم  الاستنتاج  بأن الخوارزمية المحسّنة عبر مشغلي التنوع بها فروقات عن AFSA الأولية ، كما أنها قدمت أيضًا دقة جودة سليمة ومعدل تقاطع سليم.

تفاصيل المقالة

كيفية الاقتباس
1.
خوارزمية سرب الأسماك الاصطناعية المعتمدة على عوامل التنوع لحل مشكلة جدولة ورشة العمل المرنة. Baghdad Sci.J [انترنت]. 28 أكتوبر، 2023 [وثق 22 يناير، 2025];20(5(Suppl.). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6810
القسم
article

كيفية الاقتباس

1.
خوارزمية سرب الأسماك الاصطناعية المعتمدة على عوامل التنوع لحل مشكلة جدولة ورشة العمل المرنة. Baghdad Sci.J [انترنت]. 28 أكتوبر، 2023 [وثق 22 يناير، 2025];20(5(Suppl.). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6810

المراجع

Zhu Z, Zhou X. An efficient evolutionary grey wolf optimizer for multi-objective flexible job shop scheduling problem with hierarchical job precedence constraints. Comput Ind Eng. 2020; 140: 106280. https://doi.org/10.1016/j.cie.2020.106280

Gao D, Wang G, Pedrycz W. Solving Fuzzy Job-Shop Scheduling Problem Using DE Algorithm Improved by a Selection Mechanism. IEEE Trans Fuzzy Syst. 2020; 28(12):3265 - 3275. https://doi.org/10.1109/TFUZZ.2020.3003506

Bharti P, Jain S. Hybrid frameworks for flexible job shop scheduling. Int J Adv Manuf Technol. 2020; 108(5-6): 1563–1585. https://doi.org/10.1007/s00170-020-05398-4

Abu-Srhahn A, Al-Hasan M. Hybrid Algorithm using Genetic Algorithm and Cuckoo Search Algorithm for Job Shop Scheduling Problem. Int J Comput Sci. 2015; 12(2): 288-292.

Salem I E, Mijwil M M, Abdulqader A W, Ismaeel M M. Flight-Schedule using Dijkstra's Algorithm with Comparison of Routes Finding. Int J Electr Comput. 2022; 12(2): 1675-1682. http://doi.org/10.11591/ijece.v12i2.pp%25p.

Dehghan-Sanej K, Eghbali-Zarch M, Tavakkoli-Moghaddam R, Sajadi SM, Sadjadi SJ. Solving a new robust reverse job shop scheduling problem by meta-heuristic algorithms. Eng Appl Artif Intell. 2021 May; 101: 104207. https://doi.org/10.1016/j.engappai.2021.104207.

HNK Al-behadili. Improved Firefly Algorithm with Variable Neighborhood Search for Data Clustering. Baghdad Sci J. 2022 April; 19(2): 409-421. https://dx.doi.org/10.21123/bsj.2022.19.2.0409.

Liu Z, Wang J, Zhang C, Chu H, Ding G, Zhang L. A hybrid genetic-particle swarm algorithm based on multilevel neighbourhood structure for flexible job shop scheduling problem. Comput Oper Res 2021; 135: 105431. https://doi.org/10.1016/j.cor.2021.105431

Osaba E, Villar-Rodriguez E, Ser J D, Nebro A J, Molina D, LaTorre A, et al. A Tutorial On the design, experimentation and application of metaheuristic algorithms to real-World optimization problems. Swarm Evol Comput. 2021; 64: 100888. https://doi.org/10.1016/j.swevo.2021.100888

Yasear, S A, Ku-Mahamud K R. Taxonomy of Memory Usage in Swarm Intelligence-Based Metaheuristics. Baghdad Sci J. 2019; 16: 445–452. https://doi.org/10.21123/bsj.2019.16.2(SI).0445.

Mijwil M M, Abttan R A. Applying Genetic Algorithm to Optimization Second-Order Bandpass MGMFB Filter. Pertanika J Sci Technol. 2020; 28 (4): 1413–1425. https://doi.org/10.47836/pjst.28.4.15

Wang Y, Han J. A FJSSP Method Based on Dynamic Multi-Objective Squirrel Search Algorithm. Int J Antennas Propag. 2021; Article ID 6062689: 1-19. https://doi.org/10.1155/2021/6062689

Toshev L. A. Hybrid PSO and TS Algorithm for FJSSP. 10th Natl. Conf. Int. Particip. ELECTRON. 2019 - Proc. 1-6, Sofia, Bulgaria. https://doi.org/10.1109/Electronica.2019.8825612

Alobaidi A T S, Hussein S A. An improved Artificial Fish Swarm Algorithm to solve flexible job shop. Ann Conf on New Trends in Info Comm Tech Appli. 2017; 1-6, Baghdad, Iraq. https://doi.org/10.1109/NTICT.2017.7976155

Al-Obaidi A T S, Abdullah H S, Ahmed Z O. Camel Herds Algorithm: A New Swarm Intelligent Algorithm to Solve Optimization Problems. I J P C C. 2017; 3(1): 6-10. https://doi.org/10.31436/ijpcc.v3i1.44

Al-Obaidi A T S, Hussein S A. Two Improved Cuckoo Search Algorithm to Solve Flexible Job Shop Scheduling Problem. I J P C C. 2016; 2(2): 25-31.

Shaker A S, Abdulqader A W, Mijwil M M. DE-striping hype spectral Remote Sensing Images using Deep Convolutional Neural Network. Asian J Appl Sci 2021; 9 (4): 285-290. https://doi.org/10.24203/ajas.v9i4.6719

Pythaloka D, Wibowo A T, Sulistiyo M D. Artificial fish swarm algorithm for job shop scheduling problem. In Proc on Int Conf Inf Commun Technol. 2015; 1-6, Nusa Dua, Bali, Indonesia, https://doi.org/10.1109/ICoICT.2015.7231465

Feng Y, Zhao S, Liu H, Analysis of Network Coverage Optimization Based on Feedback K-Means Clustering and Artificial Fish Swarm Algorithm. IEEE Acc 2020; 42864 - 42876. https://doi.org/10.1109/ACCESS.2020.2970208

Xu H, Zhao Y, Ye C, Lin F. Integrated optimization for mechanical elastic wheel and suspension based on an improved artificial fish swarm algorithm. Adv Eng softw. 2019; 137: 102722. https://doi.org/10.1016/j.advengsoft.2019.102722

Li X, Keegan B, Mtenzi F. Energy Efficient Hybrid Routing Protocol Based on the Artificial Fish Swarm Algorithm and Ant Colony Optimisation for WSNs. Sens. 2018; 18(10): 3351, https://doi.org/10.3390/s18103351

Ma C, He R. Green wave traffic control system optimization based on adaptive genetic-artificial fish swarm algorithm. Neural Comput Appl. 2019; 31: 2073–2083.https://doi.org/10.1007/s00521-015-1931-y

Zheng Z, Li J, Duan P. Optimal chiller loading by improved artificial fish swarm algorithm for energy saving. Math Comput Simul. 2019; 155: 227-243. https://doi.org/10.1016/j.matcom.2018.04.013

Jia B, Hao L, Zhang C, Huang B. A Privacy-sensitive Service Selection Method Based on Artificial Fish Swarm Algorithm in the Internet of Things. Mob Netw Appl 2020; 26: 1523–1531. https://doi.org/10.1007/s11036-019-01488-0

Zong X, Wang C, Du J, Jiang Y. Tree hierarchical directed evacuation network model based on artificial fish swarm algorithm. Int J Mod Phys C 2019; 30(11): 195C097. https://doi.org/10.1142/S0129183119500979

Tan W, Mohamad-Saleh J. Normative fish swarm algorithm (NFSA) for optimization. Soft Comput. 2019; 24: 2083–2099. https://doi.org/10.1007/s00500-019-04040-0

Hurink J, Jurisch B, Thole M. Tabu search for the job-shop scheduling problem with multi-purpose machines. OR Spectr. 1994; 15: 205-215.