التحقيق العددي للمعلمات الفيزيائية في الأوعية القلبية كعلم دعم طبي جديد لخصائص تدفق الدم المعقدة

محتوى المقالة الرئيسي

Defrianto
Toto Saktioto
https://orcid.org/0000-0001-9200-8998
Yan Soerbakti
https://orcid.org/0000-0002-6999-2090
Andika Thoibah
Bunga Meyzia
https://orcid.org/0000-0003-2110-6309
Romi Fadli Syahputra
https://orcid.org/0000-0002-1915-5788
Okfalisa
Syamsudhuha
Dedi Irawan
Haryana Hairi

الملخص

تقترح هذه الدراسة نهجًا رياضيًا وتجربة عددية لحل بسيط لتدفق الدم القلبي إلى الأوعية الدموية للقلب. تمت دراسة نموذج رياضي لتدفق الدم البشري عبر الفروع الشريانية وحسابه باستخدام معادلة نافييه-ستوكس التفاضلية الجزئية مع تحليل العناصر المحدودة (FEA). علاوة على ذلك ، يتم تطبيق FEA على التدفق الثابت للسوائل اللزجة ثنائية الأبعاد من خلال أشكال هندسية مختلفة. تتحدد صلاحية الطريقة الحسابية بمقارنة التجارب العددية مع نتائج تحليل الوظائف المختلفة. أظهر التحليل العددي أن أعلى سرعة لتدفق الدم تبلغ 1.22 سم / ثانية حدثت في مركز الوعاء الذي يميل إلى أن يكون رقائقيًا ويتأثر بعامل لزوجة منخفض قدره 0.0015 باسكال. بالإضافة إلى ذلك ، تحدث الدورة الدموية في جميع الأوعية الدموية بسبب ارتفاع الضغط في القلب ويقل الضغط عندما يعود من الأوعية الدموية بنفس المعايير. أخيرًا ، عندما تكون اللزوجة عالية ، تميل المقادير القصوى لتدفق الدم نحو جدار الوعاء الدموي بنفس سرعة التدرج ونصف قطره تقريبًا.

تفاصيل المقالة

كيفية الاقتباس
1.
التحقيق العددي للمعلمات الفيزيائية في الأوعية القلبية كعلم دعم طبي جديد لخصائص تدفق الدم المعقدة. Baghdad Sci.J [انترنت]. 1 ديسمبر، 2023 [وثق 24 يناير، 2025];20(6). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7076
القسم
article

كيفية الاقتباس

1.
التحقيق العددي للمعلمات الفيزيائية في الأوعية القلبية كعلم دعم طبي جديد لخصائص تدفق الدم المعقدة. Baghdad Sci.J [انترنت]. 1 ديسمبر، 2023 [وثق 24 يناير، 2025];20(6). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7076

المراجع

Bao G, Bazilevs Y, Chung JH, Decuzzi P, Espinosa HD, Ferrari M, et al. USNCTAM perspectives on mechanics in medicine. J R Soc Interface. 2014 Aug;11(97):1-26.https://doi.org/10.1098/rsif.2014.0301

Yuan HZ, Niu XD, Shu S, Li M, Yamaguchi H. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow. ComputMathAppl. 2014 Mar;67(5):1039-56.https://doi.org/10.1016/j.camwa.2014.01.006

Saktioto T, Fadilla FD, Soerbakti Y, Irawan D, Okfalisa. Application of fiber Bragg grating sensor system for simulation detection of the heart rate. J PhysConf Ser. 2021 Oct;2049(1):1-8.https://doi.org/10.1088/1742-6596/2049/1/012002

Gray RA, Pathmanathan P. Patient-specific cardiovascular computational modeling: Diversity of personalization and challenges. J CardiovascTransl Res. 2018 Apr;11(2):80-8.https://doi.org/10.1007/s12265-018-9792-2

Lin Q, Li T, Shakeel PM, Samuel RDJ. Advanced artificial intelligence in heart rate and blood pressure monitoring for stress management. J Ambient IntellHumanizComput. 2021 Mar;12(3):3329-40.https://doi.org/10.1007/s12652-020-02650-3

Jamshidi M, Ghazanfarian J. Blood flow effects in thermal treatment of three-dimensional non-Fourier multilayered skin structure. Heat Transfer Eng. 2021 Jun;42(11):929-46.https://doi.org/10.1080/01457632.2020.1756071

Arzani A, Gambaruto AM, Chen G, Shadden SC. Lagrangian wall shear stress structures and near-wall transport in high-Schmidt-number aneurysmal flows. J Fluid Mech. 2016 Mar;790:158-72.https://doi.org/10.1017/jfm.2016.6

Detmer FJ, Lückehe D, Mut F, Slawski M, Hirsch S, Bijlenga P, et al. Comparison of statistical learning approaches for cerebral aneurysm rupture assessment. Int J Comput Assist Radiol Surg. 2020 Jan;15(1):141-50.https://doi.org/10.1007/s11548-019-02065-2

Hassan EA, Al-Zuhairi WS, Ahmed MA. Serum cortisol and BMI in chronic diseases and increased early cardiovascular diseases. Baghdad Sci J. 2016 Jun;13(2.2NC):399-406.‎https://doi.org/10.21123/bsj.2016.13.2.2NCC.0399

Saifullah PH, Nida SM, Raoof IB. Levels of glucose-6-phosphate dehydrogenase in type 1 diabetes mellitus patients with nephropathy and cardiovascular disease complication. Baghdad Sci J. 2014 Jun;11(2):461-8.https://doi.org/10.21123/bsj.2014.11.2.461-468

Saktioto T, Ramadhan K, Soerbakti Y, Syahputra RF, Irawan D, Okfalisa. Apodization sensor performance for TOPAS fiber Bragg grating. Telkomnika. 2021 Dec;19(6):1982-91.https://doi.org/10.12928/telkomnika.v19i6.21669

Chitturi KS, Murty PSR, Babu KS. Convective flow and temperature distribution in rotating inclined composite porous and fluid layers. Songklanakarin J Sci Technol. 2022 Mar;44(2):370-80.https://doi.org/10.14456/sjst-psu.2022.52

Blanco PJ, Bulant CA, Müller LO, Talou GM, Bezerra CG, Lemos PA, et al. Comparison of 1D and 3D models for the estimation of fractional flow reserve. Sci Rep. 2018 Nov;8(1):1-12.https://doi.org/10.1038/s41598-018-35344-0

Čanić S, Galić M, Muha B. Analysis of a 3D nonlinear, moving boundary problem describing fluid-mesh-shell interaction. Trans Am Math Soc. 2020 Sep;373(9):6621-81.https://doi.org/10.1090/tran/8125

Defrianto D, Saktioto T, Hikma N, Soerbakti Y, Irawan D, Okfalisa O, et al. External perspective of lung airflow model through diaphragm breathing sensor using fiber optic elastic belt. Indian J Pure Appl Phys. 2022 Jul; 60(7): 561-6.https://doi.org/10.56042/ijpap.v60i7.62342

Bukač M, Yotov I, Zunino P. An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure. Numer Methods Partial Differ Equ. 2015 Jul;31(4):1054-100.https://doi.org/10.1002/num.21936

Greenstein AS, Kadir SZAS, Csato V, Sugden SA, Baylie RA, Eisner DA, et al. Disruption of pressure-induced Ca2+ spark vasoregulation of resistance arteries, rather than endothelial dysfunction, underlies obesity-related hypertension. Hypertension. 2020 Feb;75(2):539-48.https://doi.org/10.1161/HYPERTENSIONAHA.119.13540

Mirramezani M, Shadden SC. A distributed lumped parameter model of blood flow. Ann Biomed Eng. 2020 Dec;48(12):2870-86.https://doi.org/10.1007/s10439-020-02545-6

Magder S. The meaning of blood pressure. Crit Care. 2018 Dec;22(1):1-10.https://doi.org/10.1186/s13054-018-2171-1

Ershkov SV, Shamin RV, Giniyatullin AR. On a new type of non-stationary helical flows for incompressible 3D Navier-Stokes equations. J King Saud Univ Sci. 2020 Jan;32(1):459-67.https://doi.org/10.1016/j.jksus.2018.07.006

Ammar A, Abisset-Chavanne E, Chinesta F, Keunings R. Flow modelling of quasi-Newtonian fluids in two-scale fibrous fabrics. Int J Mater Form. 2017 Aug;10(4):547-56.https://doi.org/10.1007/s12289-016-1300-0

Gowthami K, Prasad PH, Mallikarjuna B, Makinde OD. Hydrodynamic flow between rotating stretchable disks in an orthotropic porous medium. Songklanakarin J Sci Technol. 2020 Mar;42:391-7.https://doi.org/10.14456/sjst-psu.2020.51

Ershkov SV. On Existence of general solution of the Navier-Stokes equations for 3D non-stationary incompressible flow. Int J Fluid Mech Res. 2015;42(3):206-13.https://doi.org/10.1615/InterJFluidMechRes.v42.i3.20

Guo X, Lu Y. Convergence and efficiency of different methods to compute the diffraction integral for gravitational lensing of gravitational waves. Phys Rev D. 2020 Dec;102(12):124076.https://doi.org/10.1103/PhysRevD.102.124076

Haq RU, Shahzad F, Al-Mdallal QM. MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders. Results Phys. 2017 Jan;7:57-68.https://doi.org/10.1016/j.rinp.2016.11.057

Riemer K, Rowland EM, Broughton-Venner J, Leow CH, Tang M, Weinberg PD. Contrast agent-free assessment of blood flow and wall shear stress in the rabbit aorta using ultrasound image velocimetry. Ultrasound Med Biol. 2022 Mar;48(3):437-49.https://doi.org/10.1016/j.ultrasmedbio.2021.10.010

Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of coronary blood flow. Compr Physiol. 2017 Mar;7(2):321-82.https://doi.org/10.1002/cphy.c160016

Sempionatto JR, Lin M, Yin L, Pei K, Sonsa-ard T, de Loyola Silva AN, et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat Biomed Eng. 2021 Jul;5(7):737-48.https://doi.org/10.1038/s41551-021-00685-1

Toghraie D, Esfahani NN, Zarringhalam M, Shirani N, Rostami S. Blood flow analysis inside different arteries using non-Newtonian Sisko model for application in biomedical engineering. Comput. Methods Programs Biomed. 2020 Jul;190:1-8.https://doi.org/10.1016/j.cmpb.2020.105338

Rukshin I, Mohrenweiser J, Yue P, Afkhami S. Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting. Fluids. 2017 Jun;2(2):29.https://doi.org/10.3390/fluids2020029

Liu K, Yin D, Su H. Transient transfer shape factor for fractured tight reservoirs: Effect of the dynamic threshold pressure gradient in unsteady flow. Energy Sci Eng. 2020 Jul;8(7):2566-86.https://doi.org/10.1002/ese3.686

Dellavale D, Rosselló JM. Cross-frequency couplings in non-sinusoidal dynamics of interacting oscillators: Acoustic estimation of the radial position and spatial stability of nonlinear oscillating bubbles. UltrasonSonochem. 2019 Mar;51:424-38.https://doi.org/10.1016/j.ultsonch.2018.07.026

Wang H, Krüger T, Varnik F. Geometry and flow properties affect the phase shift between pressure and shear stress waves in blood vessels. Fluids. 2021 Nov;6(11):1-16.https://doi.org/10.3390/fluids6110378

Karvelas E, Sofiadis G, Papathanasiou T, Sarris I. Effect of micropolar fluid properties on the blood flow in a human carotid model. Fluids. 2020 Sep;5(3):1-16.https://doi.org/10.3390/fluids5030125