التوليف الأخضر للأوكسيد الثنائي SiO2 /V2O5 جسيمات متناهية الصغر تطبيق كريم مرهم متكامل على ضمادات الجروح وخلايا سرطان الجلد
محتوى المقالة الرئيسي
الملخص
اشتملت الدراسة الحالية على تحضير المزدوج النانو SiO2/V2O5 باستخدام مواد طبيعية خام كمادة أولية حيث استخدمت رماد قشور الارز بعد حرقها بدرجة °C700 سيليزية للتخلص من المواد العضوية واللاعضوية في القشور حيث كانت هي المادة الخام لاستخلاص السليكا جل والتي تم مزجها مع أوكسيد الفناديوم الخماسي وتم تشخيص المزدوج النانو SiO2/V2O5 المحضر باستخدام عدة تقنيات مثل الأشعة السينية ,المجهر الالكتروني الماسح عالي الدقة حيث تم حساب معدل الحجم الحبيبي باستخدام صورة المجهر الالكتروني الماسح للسطح المادة المحضرة عند المقياس 200 نانومتر , مطيافية تشتت الطاقة بالأشعة السينية التي استخدمت لكشف تركيز العناصر الموجودة في النموذج المحضر SiO2/V2O5 من مادة قشور الارز الخام وتقديرها كميا ونوعيا وكذلك تم قياس المساحة السطحية للسليكا المستخلص والمزدوج المحضر SiO2/V2O5 والمقارنة بينهما كما موضح في النتائج كما تضمنت الدراسة البحثية الفعالية البيولوجية للمزدوج SiO2/V2O5 وتأثيرها على تثبيط النمو البكتيري بعد أن تم تطبيق المادة النانوية المحضرة على ضمادات الجروح حيث أعطت نتيجة واعدة لاستخدامها كضمادات موضعية تعمل على إزالة الميكروبات وخاصة لمرضى الحروق والجروح وذلك بسبب فعاليتها العالية لقتل البكتيريا الموجبة S.aurea عند تركيزµg/mL 625 التي تتميز بمقاومتها للعديد من المضادات الحيوية . تعتبر مقاومة المضادات الحيوية من المشكلات التي يسعى العديد من الباحثين لحل هذه المشكلة من خلال توفير مضادات حيوية أكثر فعالية وأمانًا. اختيار مادة السيليكا المستخلصة من مادة طبيعية لتقليل السمية الناتجة عن استخدام الكيماويات ، حيث تعتبرالسيليكا مادة غير سامة. لذلك ، أثناء التحضير ، تم الحرص على استخدام المواد الكيميائية بتراكيز منخفضة لتقليل السمية. تم دراسة التأثيرات السامة للخلايا في المختبر SiO2 / V2O5)) NPs على خط الخلايا الطبيعية Vero 101 وخط خلايا الجلد A431 وتم فحصهما بتراكيز مختلفة. تم استخدام MTT (3- (4،5-dimethylthiazol-2-yl) -2،5-diphenyltetrazolium bromide) لتحديد التأثيرات السامة للخلايا للمساحيق النانوية الخضراء المُصنّعة.
Received 11/4/2022
Accepted 15/6/2022
Published Online First 20/11/2022
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Xu C , Akakuru O U , Ma X , Zheng J, Zheng J . A Nanoparticle-based wound dressing: recent progress in the detection and therapy of bacterial infections. Bioconjug Chem .2020 Jun 14; 31(7): 1708-1723. https://doi.org/ 10.1021/acs.bioconjchem.0c00297.
Mihai M M , Dima M B , Dima B, Holban A M . Nanomaterials for wound healing and infection control. Materials . 2019 Jul 6; 12(13): 2176. https://doi.org/ 10.3390/ma12132176.
Sharma D, Rajput J, Kaith B S , Kaur M, Sharma S. Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films.2010 Nov; 519, (3): 1224-1229. https://doi.org/ 10.1016/j.tsf.2010.08.073.
Parihar V, Raja M, Paulose R.A. brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles. Rev Adv Mater. 2018Aug 1; 53(2): 119-130.
Patra J K. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018 Sep 19 ; 16(1): 1-33. https://doi.org/10.1186/s12951-018-0392-8.
Kalambur V S , Han B , Hammer B E , Shield T W , Bischof J C. In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology. 2005 May 20; 16(8): 12 21-1233. https://doi.org/ 10.1088/0957-4484/16/8/041.
Bajwa D S, Pourhashemb G , Ullahb A H , Bajwac S G .A concise review of current lignin production, applications. products and their environmental impact. Ind Crops Prod.2019 Nov 1; 139(1): 1-11. https://doi.org/10.1016/j.indcrop.2019.111526.
Iravanl S V ,Rajender S. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020 Jan 6; 22(3): 612-636. https://doi.org/10.1039/C9GC02835H.
Moosa A, Saddam B. Synthesis and characterization of nanosilica from rice husk with applications to polymer composites. Am J Mater Sci.2017 Nov ; 7 (6) : 223-231. https://doi.org/ 10.5923/j.materials.20170706.01.
Nhan H T , Huy H T , Hai L . Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett . 2013Feb ; 8 (58) : 1-20. https://doi.org/10.1186/1556-276X-8-58.
Vechia I , Conti D . Comparative cytotoxic effect of citrate-capped gold nanoparticles with different sizes on noncancerous and cancerous cell lines. J Nanopart Res. 2020May ; 22(133): 1-11. https://doi.org/ 10.1007/s11051-020-04839-1.
Mohammad D A , Subhi H K . Comparative antimicrobial activity of silver nanoparticles synthesized by Corynebacterium glutamicum and plant extracts. Baghdad Sci J. 2019 Sep 22; 16(3): 689-696 https://doi.org/10.21123/bsj.2019.16.3(Suppl.).0689.
Hussein N N, Thorria R M , Asmma E A . The antibacterial, antiheamolytic, and antioxidant activities of Laurus nobilis and Alhagi maurorum native to Iraq. Baghdad Sci J. 2019 Sept 22; 16(3) : 707-712. https://doi.org/ 10.21123/bsj.2019.16.3(Suppl.).0707.
Jayaramn V . Synergistic effect of band edge potentials on BiFeO3/V2O5 composite: enhanced photo catalytic activity. J Environ Manage. 2019Jun 21; 247: 104-114. https://doi.org/10.1016/j.jenvman.2019.06.041.
Rahman A , Nehemia P N, Nyambe M M. An Efficient Method for The Synthesis of Dihydropyridine by Hantzsch Reaction with Fe/SiO2 Nano Heterogeneous Catalysts. Bull Chem React Eng Catal. 2020 Dec 28; 15(3): 617-630. https://doi.org/ 10.9767/bcrec.15.3.7669.617-630.
Farzaneh F , Zamanifar E , Jafari L , Ghandi M. Synthesis and Characterization of V2O5/SiO2 Nanoparticles as Efficient Catalyst for Aromatization 1, 4 Dihydropyridines. J Sci Islam. 2012 Jan 7; 23(4): 313-318.
Dunn P J. The importance of green chemistry in process research and development. Chem Soc Rev. 2012May 12; 41(4): 1452-1461. https://doi.org/10.1039/C1CS15041C.
Anastas P, Eghbal N . Green chemistry: principles and practice. Chem Soc Rev. 2010 November 20; 39(1): 301-312. https://doi.org/10.1039/B918763B .
Zimmerman J B, Paul TA , Hanno C E . Designing for a green chemistry future. Science. 2020 Jan 24; 367(6476) : 397-400. DOI: 10.1126/science.aay3060.
Pirtarighat S G ,Maryam B S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J nanostructure chem. 2019 Dec 4; 9(1): 1-9. https://doi.org/10.1007/s40097-018-0291-4.
Nambela L , Haule L V , Mgani Q . A review on source, chemistry, green synthesis and application of textile colorants. J Clean Prod. 2020 Feb 10; 246: 119036. https://doi.org/10.1016/j.jclepro.2019.119036.
Lee X J. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J Taiwan Inst Chem Eng . 2019 May; 98: 163-180. https://doi.org/10.1016/j.jtice.2018.10.028.
Dabrowska S. Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: a review. Crystals. 2018 Sep 27; 8(10): 1-26 https://doi.org/10.3390/cryst8100379.
Mehwish H M . Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. J Environ Chem Eng. 2021 Aug ; 9(4): 105290. https://doi.org/10.1016/j.jece.2021.105290.
Fahimrad S, Ajallouelan F, Ghorbanpour M . Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Saf .2019 Jan 30; 16(8): 260-278. https://doi.org/10.1016/j.ecoenv.2018.10.017.
Bian H . Producing wood-based nanomaterials by rapid fractionation of wood at 8 °C using a recyclable acid hydrotrope. Green Chem. 2017 Jun6; 19(14): 3370-3379. https://doi.org/10.1039/C7GC00669A.
Zhu K . Magnetic nanomaterials: Chemical design, synthesis, and potential applications. Acc Chem Res. 2018 Feb 7; 51(2): 404-413. https://doi.org/ 10.1021/acs.accounts.7b00407.
Amante C. Vanadium and melanoma: A systematic review. Metals. 2021 May18; 11(5): 828. https://doi.org/10.3390/met11050828.
Katayoon K, Ebrahim M , Amalina M. A , Zahra I , Hossein J. Wound Dressings Functionalized with Silver Nanoparticles: Promises and Pitfalls. J Nanoscale. 2020 Dec 13; 12(4): 2268-2291. https://doi.org/:10.1039/C9NR08234D.
Alve F , Faria M D , Doress A L, Assis D , Paulino M .Synthesis by sol–gel process, characterization and catalytic activity of vanadia–silica mixed oxides .J Non-Cryst Solids. 2005 Nov ; 351(46): 3624-3629. https://doi.org/10.1016/j.jnoncrysol.2005.09.012.
Nikbakht M, Mohammad B, Pakbin G .Evaluation of a new lymphocyte proliferation assay based on cyclic voltammetry an alternative method. Sci Rep. 2019March 14; 9(1): 1-7. https://doi.org/10.1038/s41598-019-41171-8.
Chinenye N., Ezinwanne N. ,Chinekwu. S. Nwagwu C , .Preparation and evaluation of burns wound healing ointment base of leaves and stem bark of Anthocleista djalonensis (L) extract using animal model. Int J Pharm Edu Res. 2019 Jan; 1(2):1-8. https://doi.org/10.37021/ijper.v1i2.1
Parvathy P R, Resmi V N ,Willi P W , Ramapurath J S. Vanadium pentoxide nanoplates: Synthesis, characterization and unveiling the intrinsic anti-bacterial activity. Mater Lett. 2020 Jun; 269(15): 127673. https://doi.org/10.1016/j.matlet.2020.127673.
Vankovic S , Musić S , Gotic M , Ljubesic N. Cytotoxicity of nanosize V2O5 particles to selected fibroblast and tumor cells. Toxicol Vitro. 2006Apr; 20 (3): 286-294. https://doi.org/10.1016/j.tiv.2005.08.011.
Batool M , Khurshid S, Qureshi Z , Daoush WM. Adsorption, antimicrobial and wound healing activities of biosynthesised zinc oxide nanoparticles. Chem Pap 2021 Sep 17; 75(3): 893-907. https://doi.org/10.1007/s11696-020-01343-7.