التوليف والتوصيف والالتحام الجزيئي وتنبؤ ADMET والنشاط المضاد للالتهابات لبعض قواعد شيف المشتقة من الساليسيل ألدهيد كإمكانات محتمل لانزيم الأكسدة الحلقية

محتوى المقالة الرئيسي

Narmin Hamaamin Hussen
https://orcid.org/0000-0002-3719-2099

الملخص

تم تصميم سلسلة من مركبات مجموعة الساليسيل ألدهيد الحاملة لقاعدة شيف (1-4) ، وتوليفها ، وتعريضها لتنبؤ Insilco ADMET ، والالتحام الجزيئي ، والتوصيف بواسطة تقنيات تحليل FT-IR ، و CHNS ، وأخيراً إلى ملفها المضاد للالتهابات باستخدام  طرق فحص مثبطات إنزيمات الأكسدة الحلقية الفلورية جنبًا إلى جنب مع الأدوية القياسية ، والسيليكوكسيب ، والديكلوفيناك.  تم استخدام نتائج دراسات ADMET للتنبؤ بالمركبات التي ستكون مناسبة للإعطاء عن طريق الفم ، بالإضافة إلى مواقع الامتصاص ، والتوافر البيولوجي ، و TPSA ، ومثال العقاقير.  وفقًا لبيانات ADME ، يمكن امتصاص جميع المواد الكيميائية المنتجة من خلال الجهاز الهضمي.  من خلال الالتحام الجزيئي باستخدام PyRx 0.8 ، تم اختبار هذه المركبات المركبة في المختبر لفعاليتها المضادة للالتهابات وانتقائية Insilco تجاه COX-1 و COX-2.  أظهر الاختبار في المختبر أن جميع المركبات المنتجة كان لها نشاط أقوى بكثير ضد إنزيم COX-2 من COX-1.  وبنائا على ذلك، أظهر المركب 1 النشاط المثبط الأكثر فاعلية مع قيمة IC50 0.19 ميكرومتر مقارنة بالعقار القياسي celecoxib (IC50 = 0.29 ميكرومتر).  تم توجيه المركب المشتق الأكثر نشاطًا نحو الموقع النشط واحتلال الإنزيم المستهدف بناءً على تحقيق الالتحام ضد COX-1 و COX-2.  بالإضافة إلى ذلك ، وجدت التحقيقات في السيليكو أن COX-2 له نشاط تثبيط أعلى من COX-1

تفاصيل المقالة

كيفية الاقتباس
1.
التوليف والتوصيف والالتحام الجزيئي وتنبؤ ADMET والنشاط المضاد للالتهابات لبعض قواعد شيف المشتقة من الساليسيل ألدهيد كإمكانات محتمل لانزيم الأكسدة الحلقية. Baghdad Sci.J [انترنت]. 1 أكتوبر، 2023 [وثق 31 يناير، 2025];20(5):1662. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7405
القسم
article

كيفية الاقتباس

1.
التوليف والتوصيف والالتحام الجزيئي وتنبؤ ADMET والنشاط المضاد للالتهابات لبعض قواعد شيف المشتقة من الساليسيل ألدهيد كإمكانات محتمل لانزيم الأكسدة الحلقية. Baghdad Sci.J [انترنت]. 1 أكتوبر، 2023 [وثق 31 يناير، 2025];20(5):1662. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7405

المراجع

Gandhimathi R, Sangeetha M.Synthesis, Characterization, Molecular Docking of Sulphamethoxazole Schiff Base Metal Complexes and Its Antibacterial, Anti-Inflammatory, and Anti Depressant Activity. Indian J Forensic Med Toxicol. 2022; 16(1): 47-57. https://doi.org/10.37506/ijfmt.v16i1.17413.

Hsin-Tzu Liu , Yu-Ning Lin , Ming-Cheng Tsai , Ya-Chi Wu, Ming-Chung Lee. Baicalein Exerts Therapeutic Effects against Endotoxin-Induced Depression-like Behavior in Mice by Decreasing Inflammatory Cytokines and Increasing Brain-Derived Neurotrophic Factor Levels. Antioxidants .2022; 11(947): 1-14. https://doi.org/10.3390/antiox11050947 .

Nesrin M. Morsy, Ashraf S. Hassan, Taghrid S. Hafez, Mohamed R. H. Mahran, Inass A. Sadawe, Abdul M. Gbaj Synthesis, antitumor activity, enzyme assay, DNA binding and molecular docking of Bis-Schiff bases of pyrazole. J Iran Chem Soc. 2021; 18: 47–59. https://doi.org/10.1007/s13738-020-02004-y .

Yang Xu Chen, Yanli Li, Shaofen Guo, Zhen Wang, ,Xiuling Yu. Advances in Pharmacological Activitiesof TerpenoidsWenqiang. Nat Prod Commun. 2020; 15(3). https://doi.org/10.1177/1934578X20903555 .

Deema A Al-Turki, Mohamed A Al-Omar, Laila A Abou-zeid, Ihsan A Shehata, Mohammed S Al-Awady. Design, synthesis, molecular modeling and biological evaluation of novel diaryl heterocyclic analogs as potential selective cyclooxygenase-2 (COX-2) inhibitors. Saudi Pharm J. 2017; 25(1): 59-69. https://doi.org/10.1016/j.jsps.2015.07.001 .

Efraı´n Polo-Cuadrad, Karen Acosta-Quirog, Cristian Rojas-Pen, Yeray A. Rodriguez-Nun˜ez , Yorley Duarte, Iva´n Brito. et al. Molecular modeling and structural analysis of some tetrahydroindazole and cyclopentanepyrazole derivatives as COX-2 inhibitors. Arab J Chem. 2021; 15: 1-13. https://doi.org/10.1016/j.arabjc.2021.103540 .

Punsa Tobwor, Pacharawan Deenarn, Thapanee Pruksatraku, Surasak Jiemsup, Suganya Yongkiettrakul, Vanicha Vichai, et al. Biochemical characterization of the cyclooxygenase enzyme in penaeid shrimp. PLOS One. 2021; 16(4): 1-24. https://doi.org/10.1371/journal.pone.0250276 .

Zhiran Ju, Menglan Li, Junde Xu, Daniel C. Howell, Zhiyun Li, Fen-Er Chen. Recent development on COX-2 inhibitors as promising anti-inflammatory agents: The past 10 years. Acta Pharm Sin B. 2022; 12(6): 2790-2807. https://doi.org/10.1016/j.apsb.2022.01.002

Haider Al-Waeli, Ana Paula Reboucas, Alaa Mansour, Martin Morris, Faleh Tamimi, Belinda Nicolau. Non-steroidal anti-inflammatory drugs and bone healing in animal models—a systematic review and meta-analysis. Syst Rev. 2021; 10(201): 1-20. https://doi.org/10.1186/s13643-021-01690-w .

Chitra Rawat, Samiksha Kuka, Ujjwal Ranjan Dahiya , Ritushree Kukreti. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation. 2019; 16(197): 1-15. https://doi.org/10.1186/s12974-019-1592-3 .

Jessica Ceramella,Domenico Iacopetta, Alessia Catalano, Francesca Cirillo,Rosamaria Lappano , Maria Stefania Sinicropi. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics (Basel). 2022; 11(2): 1-23. https://doi.org/10.3390/antibiotics11020191 .

Domenico Iacopetta , Jessica Ceramella , Alessia Catalano , Carmela Saturnino ,Maria Grazia Bonomo , Carlo Franchini ,Maria Stefania Sinicropi. Schiff Bases: Interesting Scaffolds with Promising Antitumoral Properties. Appl Sci. 2021; 11 (1877): 1-20. https://doi.org/10.3390/app11041877 .

Edyta Raczuk, Barbara Dmochowska, Justyna Samaszko-Fiertek, Janusz Madaj Different Schiff Bases—Structure, Importance and Classificatio. Molecules. 2022; 27(3): 787. https://doi.org/10.3390/molecules27030787

Shorouk S Mukhtar, Ashraf S Hassan, Nesrin M Morsy, Taghrid S Hafez, Fatma M Saleh ,Hamdi M. Hassaneen. Design, synthesis, molecular prediction, and biological evaluation of pyrazole-azomethine conjugates as antimicrobial agents. Synth. Commun. 2021; 51(10): 1564-1580. https://doi.org/10.1080/00397911.2021.1894338.

Uba Bala .Synthesis, Characterization and Antimicrobial Activities of Schiff Base Complexes of Co (II) and Cu (II) Derived from Salicyldehyde and Diphenylamine. Sch Int J Chem Mater Sci. 2022; 5(1): 6-10. https://doi.org/10.36348/sijcms.2022.v05i01.002

Hassan M A Al-Redha ,Safaa H Ali, Saad S Mohammed. Syntheses, Structures and Biological Activity of Some Schiff Base Metal Complexes. Baghdad Sci J. 2022; 19(2): 704-7015. http://dx.doi.org/10.21123/bsj.2022.19.3.0704.

Sahar S Hassan, Nidhal M Hassan, Shaymaa Rajab Baqer, Asmaa M Saleh. Biological Evaluation and Theoretical Study of Bi-dentate Ligand for Amoxicillin Derivativewith Some Metal Ions. Baghdad Sci J. 2021; 18(4): 1269-1278. http://dx.doi.org/10.21123/bsj.2021.18.4.1269

Ngozi P Ebosie, Martin Oonwu, Gerald O. Onyedika, Fidelis C. Onwumere. Biological and analytical applications of Schiff base metal complexes derived from salicylidene-4-aminoantipyrine and its derivatives: a review. J Iran Chem Soc. 2021; 18: 3145–3175. https://doi.org/10.1007/s13738-021-02265-1.

Ahmed M, Mohammed A, Majid A, Mohd N, Amani S. Synthesis, analgesic, anti-inflammatory, and anti-ulcerogenic activities of certain novel Schiff’s bases as fenamate isosteres. Bioorg Med Chem Lett. 2015; 25(2): 179-183. https://doi.org/10.1016/j.bmcl.2014.11.088.

Martin Krátký, Magdaléna Dzurková, Janoušek Jiˇrí, Klára Koneˇcná , František Trejtnar , Jiˇrina Stolaˇríková, et al . Sulfadiazine Salicylaldehyde-Based Schiff Bases: Synthesis, Antimicrobial Activity, and Cytotoxicity. Molecules. 2017; 22(9): 1573. https://doi.org/10.3390/molecules22091573.

Lei Shi, Hui-Ming Ge, Shu-Hua Tan, Huan-Qiu Li, Yong-Chun Song, Hai-Liang. et al. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur J Med Chem. 2007; 42(4): 558-64. https://doi.org/10.1016/j.ejmech.2006.11.010 .

Aso Hameed Hasan, Sankaranarayanan Murugesan, Syazwani Itri Amran, Subhash Chander, Mohammed M Alanazi, Taibi Ben Hadda .et al. Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorg Chem. 2021; 119: 1-12. https://doi.org/10.1016/j.bioorg.2021.105572.

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(1): 42717. https://doi.org/10.1038/srep42717

Kumar V, Roy K. Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases. SAR QSAR Environ Res. 2020; 31(7): 511-526. https://doi.org/10.1080/1062936X.2020.1776388

Malgorzata N Drwal , Priyanka Banerjee , Mathias Dunkel , Martin R Wettig , Robert Preissner. ProTox: a web server for the in-silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014; 42(1): W53–W58. https://doi.org/10.1093/nar/gku401.

Mubarak A Alamri, Mohammed A. Alamri. Pharmacophore and docking-based sequential virtual screening for the identification of novel Sigma 1 receptor ligands. Bioinformation.2019; 15(18): 586-595. https://doi.org/10.6026/97320630015579.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Bhat T N, Helge Weissig ,et al. The Protein Data Bank. Nucleic Acids Res .2000; 28(1): 235-42. https://doi.org/10.1093/nar/28.1.

Absarul Haque , Ghazanfar Ali Baig , Abdulelah Saleh Alshawli , Khalid Hussain Wali Sait, Bilal Bin Hafeez, Manish Kumar Tripathi. et al. Interaction Analysis of MRP1 with Anticancer Drugs Used in Ovarian Cancer: In Silico Approach .Life. 2022; 12(2): 1-12. https://doi.org/10.3390/life12030383

Narmin H. Amin Hussen. Docking Study of Naringin Binding with COVID-19 Main Protease Enzyme. Iraqi J Pharm Sci. 2020; 29(2): 231-238. https://doi.org/10.31351/vol29iss2pp231-238.

Trott O , Olson A. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2): 455-461. https://doi.org/10.1002/jcc.21334.

Kezhal M. Salih, Dana Ameen, Aras Najmaddin Hamad, Aryan Rizgar Ganjo,Sarbast Muhammed. Synthesis and pharmacological profile of some new 2-substituted-2, 3-dihydro-1H-perimidine. Zanco J Med Sci. 2020; 24 (1): 68-79. https://doi.org/10.15218/zjms.2020.010 .

Rotondo E, Pietropaolo R, Tresoldi G, .Faraone F, Cusmano F. Mechanism of formation of Schiff base complexes. Part. I. Reaction of Ni (bis-salicylaldehyde) with primary amines.Inorganica Chim. Acta. 1976; 17:181-191

Christopher A Lipinski. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4): 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007 .

Aso Hameed Hasan, Narmin Hamaamin Hussen, Sonam Shakya, Joazaizulfazli Jamalis, Mohammad Rizki Fadhil Pratama,et al. In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions. Struct Chem. 2022; 1-21. https://doi.org/10.1007/s11224-022-01996-y

Lakshmipraba J, Arunachalam S, Solomon R, Venuvanalingam P, Riyasdeen A, Dhivya R, et al.Surfactant-copper (II) Schiff base complexes: synthesis, structural investigation, DNA interaction, docking studies, and cytotoxic activity. J Biomol Struct Dyn. 2015; 33(4): 877–891. https://doi.org/10.1080/07391102.2014.918523

Antoine Daina, Vincent Zoete. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. Chem Med Chem. 2016; 11(11): 1117–1121. https://doi.org/10.1002/cmdc.201600182 .

Zhao Y H, Abraham M, Le J, Hersey A, Luscombe C, Beck G, et al. Rate-limited steps of human oral absorption and QSAR studies. Pharm Res. 2002; 19(10): 1446–1457. https://doi.org/10.1023/A:1020444330011

Alaa A –M Abdel-Aziz, Adel S El-Azab, Nawaf A AlSaif, Mohammed M Alanazi, Manal A El-Gendy, Ahmad J Obaidullah, ,etal. J Enzyme Inhib Med Chem.2020;35(1): 610-621. https://doi.org/10.1080/14756366.2020.1722120