تأثير المتغيرات الفيزيائية والكيميائية على تنوع الهائمات النباتية في هور شرق الحمار/جنوب العراق
محتوى المقالة الرئيسي
الملخص
ان التنوع الحيوي من العوامل البيولوجية المهمة في تحديد نوعية المياه والحفاظ على التوازن البيئي .لوحظ في الدراسة الحالية وجود
221 نوعا من الهائمات النباتية وكانت تنتمي الى 88 نوعا Bacillariophyta بنسبة 44 %تليها Chlorophya تنتمي الى 07 نوعا بنسبة
22 %وفي المرتبة الثالثة Cyanophytaوتنتمي الى 12 نوعا بنسبة 31,%اما Euglenozoa تنتمي الى 32 نوعا بنسبة 4 ، %ثم تنتمي الى
اربع أنواع Miozoa بنسبة 1 ، %اما األقسام Charophyta وOchrophya فجاءت بالمرتبة األخيرة والتي تنتمي الى ثمانية أنواع لالولى
ونوعان للثانية بنسبة مئوية 2 .%من األنواع الشائعة للهائمات النباتية التي سجلت في محطات الدراسة ,palea Nitzschia
مع قوية موجبة ارتباط عالقة واظهرت Scenedesmus quadricauda, Oscillatoria princeps and Peridinium bipes
و Gomphosphaeria semen-vitis Dicloster acuatus, Tetrastrum heteracanthum اع االنو واما Ec, Sio3 WT
fibula Dictyocha , اظهرت عالقة ارتباط موجبة قوية مع االوكسجين المذاب ,االس الهيدروجيني ,الفوسفات الفعالة والنترات الفعالة تتراوح
قيمة درجة حرارة الماء بين 277.34 -277.11 cº في المنصوري والسدة على التوالي ، تتراوح قيمة التوصيلية الكهربائية بين 027.2-
277.33 cm/ms في السدة والمنصوري. تتراوح درجة االس الهيدروجيني بين 057.0 - 177.8 ، ويتراوح االوكسجين المذاب )DO )بين
DO (r= - 0.603)و) r= - 0.591) pH, (r= - 0.463) NO3 مع سالبة ارتباط عالقة الماء حرارة درجة سجلت mg/l 31.777-5.257
،بلغت اعلى قيمة للنترات الفعالة 017.34 l/µg بينما كانت ادنى قيمة 507.7 l/µg . بلغ الحد األعلى للفوسفات الفعالة 154.0 l/µg بينما
كانت قيمة الحد االدنى 003.0 l/µg ,وبلغت اعلى قيمة للسليكات الفعالة 177.328 l/µg بينما كانت ادنى قيمة 200.51 l /µg .سجلت
NO3 عالقة ارتباط سالبة مع Sio3) 328.0= - r (وEC) 382.0= - r (بلغت اعلى قيمة لمؤشر شانون وواينر `(H (162.3 وكانت
ادنى قيمة 275.2 , بلغت اعلى قيمة لمؤشر سمبسون 950.0 وكانت ادنى قيمة 856.0 ,وبلغ الحد األعلى لمؤشر التكافؤ 933.0 اما الحد
االدنى 514.0 وسجل دليل شانون وواينرعالقة ارتباط موجبة مع دليل سمبسون
Received 24/6/2022
Revised 12/9/2022
Accepted 14/9/2022
Published Online First 20/3/2023
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Toma JJ, Aziz FH. Algal study in springs and streams from Shaqlawa district, Erbil Province, Iraq I- Euglenophyta Baghdad Sci J. 2022; 19(3): 483-492
Djumanto, Rasul E, InoueT, Aoki S. Phytoplankton distribution in Mikawa Bay of Japan in relation to temperature and salinity variables. Wetlands 2017;1: 16-25.
Schaum C, Barton S, Bestion E. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat Ecol Evol. 2017; 1:0094.
Taipale S J, Vuorio K, Aalto S L, Peltomaa E, Tiirola M . Eutrophication reduces the nutritional value of phytoplankton in boreal lakes. Environ Res. 2019; 179: 108836.
Bergstrom AK, Jonsson A, Isles PDF, Creed IF, Lau CP. Changes in nutritional quality and nutrient limitation regimes of phytoplankton in response to declining N deposition in mountain lakes. Aquat Sci. 2020; 82(2): 31.
Inyang AI, Wang YS. Phytoplankton diversity and community responses to physicochemical variables in mangrove zones of Guangzhou Province, China, Springer. Ecotoxicology. 2020; 29(6): 650–668. https:// doi.org/10.1007/s10646-020-02209-0.
Radwan A M, Abdelmoneim M A, Basiony A I, El-Alfy M A. Water Pollution Monitoring in Idku Lake
(Egypt) using Phytoplankton and NSF-WQI. Egypt J Aquat Biol Fish. 2019; 23(4): 465 – 481
Jaffer E M, Al-Mousawi N J, Al-Shawi I J M. A Qualitative Study of Non-diatom Phytoplankton in East Al- Hammar Marsh. Egypt J Aquat Biol Fish, 2022; 26 (4): 449 – 468
Talib AH. Some limnological features of al-hammar marsh south of Iraq after restoration. Iraqi J Agric Sci. 2017; 48(3): 1331-1313.
Yaseen ST, Shaban AH, Jasim KA. Flood Behavior of Al-Hammar Marshes J Phys Conf Ser. 2021; 1879: 032062
AL-Musawi NO, AL-Obaidi SK, AL-Rubaie FM .Evaluating water quality index of Al- Hammar marsh,south of Iraq with the application of GIS technique. J Eng Sci Tech.2018; 13 (12): 4118 – 4130
Dhaidan B A, Alwan I A, Al-Khafaji M S. Utilization of Satellite Images-Based Indices for Assessment of Al -Hammar Marsh Restoration plan. Eng Technol. 2021; 39 (08): 1328-1337.
Hussain N A, Sabbar A A. Trophic levels of Tidal and Non-Tidal Marshes of Southern Mesopotamia Basrah J Agric Sci. 2020; 33(2): 172-181.
Ghassan A Al-Nagar, Ali A Douabul, Sajed S Al-Noor. Water Quality Index (WQI) as indicator of the East Hammar marsh after sharpe salinity increase during summer 2018. Mar Bull. 2020 April; 15(1): 1–11
Maulood Bk , Hassan FM. Phytoplankton and Primary Production in Iraqi Marshes In : Jawad LA (ed.),Southern Iraq’s Marshes, Coast Research Library , Springer Cham 2021; 36: 217-231.: https://doi.org/10.1007/978-3-030-66238-7_12
Albueajee AI, Hassan F M, Douabul AAZ. phytoplankton species composition and biodiversity indices in auda marsh- southern Iraq. Iraqi J Sci. 2020; 51(Special Issue): 217-228.
Al-Thahaibawi BMH, Al-Mayaly IKA, Al-Hiyaly SAK. Phytoplankton community within Al-Auda marsh in maysan province southern Iraq. IOP Conf Series: Environ Earth Sci. 2021; 722: 012026
Jaafar FA, Abdulwahhab AS. Impacts of the Physico-chemical Properties of Al-Chibayish Water Marshes on The Biodiversity of Phytoplankton. Iraqi J Sci. 2021; 62(2): 402-414
Hussein ZE, Hasan RH, Aziz NA. Detecting the Changes of AL-Hawizeh Marshland and
Surrounding Areas Using GIS and Remote Sensing Techniques Assoc. Arab Univ J Eng. Sci. 2018; 25: 53
Shimal S, Shaban AH .Estimation of groundwater pollution in Baiji / Salah Al-Deen province Iraq. AIP Conf Proc. 2019 July; 2123(1): 020058.
APHA (American Public Health Association). Standard methods for examination of water and wastewater. 21th ed, Washington D C. 2005; 1193p
Al-Handal AY, Wulff A. Marine epiphytic diatoms from the shallow sublittoral zone in Potter Cove, King George Island, Antarctica Bot Mar. 2008; 51: 411-435.
Martinez M R, Chakroff R P, pantastico JB. Note on direct phytoplankton counting technique using the haemocytometer. Phil Agric. 1975. 59: 1 – 12.
Desikachary TV. Cyanophyta, Indian Council of Agricultural Research,New Delhi. 1959; 686 p.
Prescott GW.Algae of the Western Great Lake Area,William,c.Brown co.,publ.Dubuque, lowa,1982, 977p.
Guiry MD, Guiry GM. AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. 2019; http://www.algaebase.org
Shannon CE, Wiener W. The mathematical theory of communication. Urbana university of Illinois Press, Chicago, USA; 1949. 117 p.
Simpson EH. Measurement of diversity. Nature. 1949; 163(688):688p. http://dx.doi.org/10.1038/163688a0
Pielou EC. Mathematical ecology. John Wiely & Sons, New York-London-Sydney-Toronto. Biom. J. 1978; 20(6): 627-628. https://doi.org/10.1002/bimj.4710200616
Margalef, R. perspectives in ecology. University of Chicago press. Chicago. Limnol. Oceanogr.1969; 14(2): 179-316. https://doi.org/10.4319/lo.1969.14.2.0313
Ali H A, Owaid M N, Ali S F. Recording Thirteen New Species of Phytoplankton in Euphrates River Environment in Iraq. Walailak J Sci Tech 2020; 17(3): 200-211
Ashour M, Mabrouk M M, Ayoub H F, El-Feky M M, Zaki SZ, Hoseinifar S H, et al.
Effect of dietary seaweed extract supplementation on growth, feed utilization, hematological indices, and non-specific immunity of Nile Tilapia, Oreochromis niloticus challenged with Aeromonas hydrophila. J Appl Phycol . 2020; 32(5): 3467-3479.
Alshaaban Z A A, Al-Hejuje M M. Comparison of the Application of two Trophic Status Indices at East Al -Hammar marsh - southern Iraq. Mar Bull. 2021 Sep; 16(2) : 161–172
Adlan NH,Al-Abbawy DA.Changes in physicochemical characteristics of water along shatt Al-Arab river. Indian J Ecol. 2022; 49 Special Issue (18): 300-307
Rasheed S S. Qualitative and quantitative study of the planktonic and epiphytic diatoms in east Hammar marsh /southern Iraq Master's Thesis, College of Science, University of Basra; 2019.
Hussain NA, Abdalhsan H TH,Abduijaleel SA. Fish zonation patterns in East AL-Hammar tidal marsh/Basrah-Iraq, Mar Bull 2020 April; 15(1): 88-28.
Sivakumar K, Karuppasamy R. Factors affecting productivity of Phytoplankton in a Reservoir of 354
Tamilnadu , India Amer Eur J Bot. 2008; 1(3): 99-103
Koralay N, Kara O, Kezik U. Effects of run-of-the-river hydropower plants on the surface water quality in the Solakli stream watershed, Northeastern Turkey. Water Environ J. 2018; 32: 412-421
Hassan F M, Al-Kubaisi A A , Talib A H , Taylor W D , Abdulah D S. Phytoplankton primary production in southern Iraqi marshes after restoration, Baghdad Sci J. 2011; 8(1): 1111
Lind OT. Hand book of common methods in limnology. 2nd ed. London; 1979. 109 p.
Bergstrom AK, Jonsson A, Isles PDF, Creed IF, Lau DCP. Changes in nutritional quality and nutrient limitation regimes of phytoplankton in response to declining N deposition in mountain lakes. Aquat Sci. 2020; 82: 31
Taipale S J, Vuorio K, Aalto SL, Peltomaa E , Tiirola M . Eutrophication reduces the nutritional value of phytoplankton in boreal lakes. Environ Res. 2019; 179: 108836
Sourina A, Richard M. Phytoplankton and its contribution to primary production in two coral reef areas of French Polynesia. J Exp Mar Biol Ecol.1976; 21: 129-140
Sanal M, Demir N. Use of the epiphytic diatoms to estimate the ecological status of Lake Mogan. Appl Ecol Environ Res. 2018; 16(3): 3529–3543
Al-Ahmady SSR,Al-Abbawy DAH, Al-Shaheen MAG . Relationships between environmental variables and both of planktonic and epiphytic diatoms in the East Hammar marshes, Southern Iraq Mar Bull. 2019 April; 14(1): 22-43
Al-Hussieny A A, Ali H A. List of Algae Species of Ramadi City within the Environment of the Euphrates River – Iraq. Curr Res Microbiol Biotechnol. 2017; 5(6): 1364-1374.
Hassan F M, Salman J M and Al-Nasrawi, S. Community Structure of Benthic Algae in a Lotic Ecosystem, Karbala Province Iraq. Baghdad Sci J. 2017; 14(4): 2017.
Abdalhameed TA, Al Hassany JS. The Qualitative and Quantitative Composition of Epiphytic Algae on Ceratophyllum demersum L. in Tigris River within Wassit Province, Iraq Baghdad Sci J. 2019; 16(1): 1-9
ALbueajee AI, Hassan FM, Douabul AAZ. Epiphytic Algae Composition and Biodiversity in Auda Marsh / Southern of Iraq, J Res Lepid. 2020 June; 51 (2): 1135-1150.
Al-Shaheen MA, Al-Handal AY. Influence of environmental variables and different hosting substrate on diatom Assemblage in the Shatt Al-Arab River, Sothern Iraq. Biol Appl Environ Res. 2017; 1(1): 69-87
Al-Hassany J S, Alrubai G H, Jasim I M. The potential use of the diatom Nitzschia palea (Kützing) W.
Smith For the Removal of Certain Pollutants from AlRustumeyah Wastewater Treatment Plant in Baghdad-Iraq IOP Conf. Series: Environ Earth Sci. 2021; 779: 012114
Ajlala SO, Alexander ML. Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. Int J Energy Environ Eng. 2020; 11:311–326 2020
Bhat N A, Wanganeo A, Raina R. Variability in Water Quality and Phytoplankton Community during Dry and Wet Periods in the Tropical Wetland, Bhopal, India. J Ecosys Ecograph 2015; 5:2
Yang J, Li B, Zhang C, Luo H, Yang Z. pH-associated changes in induced colony formation and growth of Scenedesmus obliquus Fundam. Appl Limnol. 2016; 187(3):241–246
setyono P, Himawan W. Analyses of bioindicators and physicochemical parameters of water of Lake Tondano, North Sulawesi Province, Indonesia, Biodivers. 2018 May ;19 ( 3) : 867-874
Akhter S, Brraich OS. Spatial and Temporal Distribution of Phytoplankton from Ropar Wetland (Ramsar Site) Punjab, India. Appl Ecol Environ Sci, 2020; 8(1): 25-33
Richardson C J, Reiss P, Husain N A, Alwash A J and Pool D J. “The Restoration Potential of the Mesopotamian Marshes of Iraq. Science. 2005; 307:5713: 1307-1310