عزل وتشخيص البكتيريا المحللة للبولي ايثيلين تيريفثاليت من مياه شط العرب ومياه الصرف الصحي في مدينة البصرة

محتوى المقالة الرئيسي

Eman Aboob Mukhaifi
https://orcid.org/0000-0003-3762-5103
Hala Sabry Al-Atbi
https://orcid.org/0000-0002-7873-3269
Suhyila Fadhil Ali

الملخص

التحلل الحيوي للمواد البلاستيكية هو استخدام الكائنات الحية الدقيقة لتحطيم هذه المواد إلى منتجات آمنة للبيئة ، مثل ثاني أكسيد الكربون والماء والكتلة الحيوية. نهدف في الدراسة الحالية إلى عزل وتشخيص بكتيريا ذات قدرة على تحلل البولي إيثيلين تيريفثاليت PET  من مياه شط العرب ومياه الصرف الصحي في مدينة البصرة . وفقا للنتائج فان العزلات أظهرت فرقًا معنويًا عاليًا في تحلل PET  بنسبة24٪ خلال 7 أيام وزادت نسبة التحلل الى 46٪ في 4 أسابيع مقارنةً بالضابطة. كما اشتملت الدراسة على تحديد درجة الحرارة المثلى لنموالبكتريا وهي 37 درجة مئوية، بينما الرقم الهيدروجيني الامثل للنمو 7-8. أظهر البحث أن التحلل البيولوجي لبوليمرPET يمكن ان يتم باستخدام بكترياK. Pneumonia كطريقة مناسبة وصديقة للبيئة.

تفاصيل المقالة

كيفية الاقتباس
1.
عزل وتشخيص البكتيريا المحللة للبولي ايثيلين تيريفثاليت من مياه شط العرب ومياه الصرف الصحي في مدينة البصرة. Baghdad Sci.J [انترنت]. 28 أكتوبر، 2023 [وثق 19 يناير، 2025];20(5(Suppl.). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7772
القسم
article

كيفية الاقتباس

1.
عزل وتشخيص البكتيريا المحللة للبولي ايثيلين تيريفثاليت من مياه شط العرب ومياه الصرف الصحي في مدينة البصرة. Baghdad Sci.J [انترنت]. 28 أكتوبر، 2023 [وثق 19 يناير، 2025];20(5(Suppl.). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7772

المراجع

Hankermeyer CR, Tjeerdema RS. Polyhydroxybutyrate: plastic made and degraded by microorganisms. Rev. Environ. Contam. Toxicol. 1999;159:1-24. http://dx.doi.org/10.1007/978-1-4612-1496-0_1.

Sheldon RA, Norton M. Green Chemistry and the Plastic Pollution Challenge: Towards a Circular Economy. Green Chem. 2020; 22(19): 6310-6322.

Carr CM, Clarke DJ, Dobson AD. Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. Front. Microbiol. 2020;11: 571265. http://dx.doi.org/10.3389/fmicb.2020.571265

Jaiswal S, Sharma B, Shukla P. Integrated approaches in microbial degradation of plastics. Environ Technol. Innov.2020;17:100567. http://dx.doi.org/10.1016/j.eti. 2019.100567 .

Maurya A, Bhattacharya A, Khare SK. Enzymatic Remediation of Polyethylene Terephthalate (PET)–Based Polymers for Effective Management of Plastic Wastes: An Overview. Front. Bioeng. Biotechnol. 2020;8:602325.http://dx.doi.org/10.3389/fbioe.2020.602325.

Varyan I, Kolesnikova N, Xu H, Tyubaeva P, Popov A. Biodegradability of Polyolefin-Based Compositions: Effect of Natural Rubber. Polymers. 2022; 14(3): 530.

Ogunbayo A, Olanipekun O, Adamu I. Preliminary Studies on the Microbial Degradation of Plastic Waste Using Aspergillus Niger and Pseudomonas sp. J. Environ. Prot. 2019; 10(5): 625-631. http://dx.doi.org/10.4236/jep.2019.105037.

Leja RK, Lewandowicz G. Polymer Biodegradation and Biodegradable Polymers – a Review. Polish J. Environ. Stud. 2010; 19(2): 255-266.

Komal Khan A, Majeed T. Biodegradation of Synthetic and Natural Plastics by Microorganisms: A Mini Review. J. Nat Appl. Sci. Pak. 2019; 1 (2): 180-184.

Danso D, Chow J, Streit WR. Plastics: Environmental and biotechnological perspectives on microbial degradation. Appl. Environ. Microbiol. 2019; 85 (19): e01095–19. https://doi.org/10.1128/AEM.01095-19.

Sharma J, Sundar D, Srivastava P. Biosurfactants: Potential Agents for Controlling Cellular Communication, Motility, and Antagonism. Front. Mol.Biosci.2021;8:727070.https://doi.org/10.3389/fmolb.2021.727070 .

Goswami M, Chakraborty P, Mukherjee K, Mitra G, Bhattacharyya P, Dey S, et al. Bio augmentation and bio stimulation: a potential strategy for environmental remediation. J. Microbiol. Exp. 2018; 6(5): 223‒231.

Zeenat, Elahi A, Bukhari DA, Shamim S, Rehman A. Review Plastics degradation by microbes: A sustainable approach. J. King Saud Univ. Sci. 2021; 33(6):101538.https://doi.org/10.1016/j.jksus.2021.101538.

Montazer Z, Habibi Najafi MB, Levin DB. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can. J. Microbiol. 2019;65:1–11.https://doi.org/10.1139/cjm-2018-0335.

Ren L, Men L, Zhang Z, Guan, F, Tian J, Wang, et al. Biodegradation of polyethylene by Enterobacter sp. D1 from the guts of Wax Moth Galleria mellonella. Int. J. Environ. Res. Public Health. 2019; 16: 1941. https://doi.org/10.3390/ijerph1611194 .

Giacomucci L, Raddadi N, Soccio M, Lotti N, Fava F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol. 2019; 52: 35-41. http://dx.doi.org/10.1016/j.nbt.2019.04.005.

Chao-Fan Y, Ying X, Ning-Yi Z. Biodegradation of polyethylene mulching films by a co-culture of Acinetobacter sp. strain NyZ450 and Bacillus sp. strain NyZ451 isolated from Tenebrio molitor larvae. Int. Biodeterior. Biodegradation. 2020; 155:105089. http://dx.doi.org/10.1016/j.ibiod.2020.105089

Ahmed IA, Aljondi AI, Alabed AA, Al-Mahdi AY, Abdsalam R. Isolation, Screening and Antibiotic Sensitivity of Pseudomonas species from Kelana Jaya Lake Soil in Selangor Malaysia. Baghdad Sci. J. 2021; 18(3):455-461. http://dx.doi.org/10.21123/bsj.2021.18.3.0455.

Sulaiman AI. Molecular Identification of Fusobacterium Isolates and limitation of Biofilm Formation Adhesion Gene(fadA)in Dental Outpatients. Baghdad Sci. J. 2019; 16(4): 843-848. http://dx.doi.org/10.21123/bsj.2019.16.4.0843.

Cowan ST, Holt JG, Liston J, Murry RGE, Niven CF, Ravin AW, et al. Bergy,s Manual of Determination Bacteriology .8th ed. Baltimore, USA, The Williams and Wilkines company. 1974. p33-46.

Al-Jailawi MH, Ameen RS, Al-Saraf AA. Polyethylene degradation by Pseudomonas putida S3A Int. J. Adv. Res. Biol. Sci. 2015; 2(1): 90–97.

Gao R, Sun C. A marine bacterial community capable of degrading poly (ethylene terephthalate) and polyethylene. J. Hazard Mater. 2021; 416: 125928. https://doi.org/10.1016/j.jhazmat.2021.125928.

Janczak K, Hrynkiewicz K, Znajewska Z, Dąbrowska G. Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil. Int. Biodeterior. Biodegrad. May 2018; 130: 65-75. https://doi.org/10.1016/j.ibiod.2018.03.017.

Taniguchi I, Yoshida S, Hiraga K, Miyamoto K, Kimura Y, Oda K. Biodegradation of PET: Current Status and Application Aspects. Acs. Catal. 2019; 9(5): 4089–4105.

Amobonye A, Bhagwat P, Singh S, Pilla S. Plastic biodegradation: Frontline microbes and their enzymes. Sci. Total Environ. 2021; 759: 143536. https://doi.org/10.1016/j.scitotenv.2020.143536.

Zhong Y, Godwin P, Jina Y, Xiao H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv. Ind. Eng. Polym. Res. 2020; 3(1): 27-35. https://doi.org/10.1016/j.aiepr.2019.11.002.

Peil GHS, Kuss AV, Rave AFG, Villarreal JPV, Hernandes YML, Nascente PS. Bioprospecting of lipolytic microorganisms obtained from industrial effluents. An. Acad. Bras. Cienc. 2016; 88(3 Suppl.): 1769-1779. http://dx.doi.org/10.1590/0001-3765201620150550 .

Awasthi S, Srivastava P, Singh P, Tiwary D, Kumar Mishra P. Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumonia CH001. Biotech. 2017; 7(5): 332. http://dx.doi.org/10.1007/s13205-017-0959-3 .

Zumstein MT, Rechsteiner D, Roduner N, Perz V, Ribitsch D, Guebitz GM, et al. Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active-site accessibility. Environ. Sci. Technol. 2017; 51(13): 7476–7485. http://dx.doi.org/10.1021/acs.est.7b01330

Bollinger A, Thies S, Knieps-Grünhagen E, Gertzen C, Kobus S, Hoppner A, et al. A Novel Polyester Hydrolase from the Marine Bacterium Pseudomonas aestusnigri – Structural and Functional Insights. Front Microbiol.2020;11:114.https://doi.org/10.3389/fmicb.2020.00114.

Ronkvist AM, Xie W, Lu W, Gross RA. Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules. 2009; 42(14): 5128–5138. https://doi.org/10.1021/ma9005318 .

Donelli I, Freddi G, Nierstrasz VA, Taddei P. Surface structure and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and cutinase. Polym. Degrad. Stab. 2010; 95(9): 1542–1550. http://dx.doi.org/10.1016/j.polymdegradstab.2010.06.011 .

Gamerith C, Zartl B, Pellis A, Guillamot F, Marty A, Acero EH, et al. Enzymatic recovery of polyester building blocks from polymer blends. Process Biochem. 2017; 59: 58–64. http://dx.doi.org/10.1016/j.procbio.2017.01.004 .

Hiraga K, Taniguchi I, Yoshida S, Kimura Y, Oda K. Biodegradation of waste PET A sustainable solution for dealing with plastic pollution. EMBO reports. 2019;20(11):e49365https://doi.org/10.15252/embr.201949365.

Yoshida S, Hiraga K, Takehara T, Oda, K. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science. 2016; 351: 1196–1199. https://doi.org/10.1126/science.aad6359 .

Li WJ, Jayakody LN, Franden MA, Wehrmann M, Daun T, Hauer B. et al. Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by Pseudomonas putida KT2440. Environ Microbiol. 2019; 21: 3669–3682. https://doi.org/10.1111/1462-2920.14703 .

Dev S, Saha S, Kuradea MB, Salamaad E, El-Dalatony MM, Ha GS, et al. Perspective on anaerobic digestion for biomethanation in cold environments. Renewable Sustainable Energy Rev. 2019; 103: 85-95. https://doi.org/10.1016/j.rser.2018.12.034.

Hussein A, Khudhair S, Al-Mayaly I. Optimum Conditions for LDPE Strips Biodegradation by Local Bacterial Isolates. Int. J. Environ. Sci. 2015; 10(4): 399-407.

Sanchez-Clemente R, Igeno MI, Poblacion AG, Guijo MI, Merchan F, Blasco R. Study of pH Changes in Media during Bacterial Growth of Several Environmental Strains. Proc. 2018; 2(20): 1297; https://doi.org/10.3390/proceedings2201297 .

Han X, Liu W, Huang JW, Ma J, Zheng Y, Ko TP, et al. Structural Insight into Catalytic Mechanism of PET Hydrolase. Nat. Commun. 2017; 8 (1): 2106. https://doi.org/10.1038/s41467-017-02255-z.