المعادلة التفاضلية التباطؤية من الرتبة الثانية ومعيار تذبذبها
محتوى المقالة الرئيسي
الملخص
تركز هذه الدراسة على دراسة تذبذب المعادلة التفاضلية التباطؤية من الدرجة الثانية . بدء العمل, تم تقديم المعادلة هنا مع الشروط المناسبة. كل ما سبق مدعوم بالنظريات والأمثلة التي تفسر قابلية التطبيق للشروط المستنتجة.
Received 16/09/2022,
Revised12/02/2023,
Accepted 14/02/2023,
Published 20/06/2023
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Bayramoglu M, Bayramov A, S¸en E. A regularized trace formula for a discontinuous Sturm-Liouvile operator with delayed argument. Electron. J Differ Equ. 2017; 2017(104): 1-12.http://www.kurims.kyoto-u.ac.jp/EMIS/journals/EJDE/Volumes/2017/104/bayramoglu.pdf
Jasim AH. Studying the solutions of the delay Sturm Liouville problems. Ital J Pure Appl Math. 2020; 43: 842-849. https://ijpam.uniud.it/online_issue/202043/69%20AnmarHashimJasim.pdf
Jasim AH, Al-Baram BM. Discussion on delay Bessel's problems. IntJNonlinearAnalAppl. 2022; 13(1): 2303-2306. https://ijnaa.semnan.ac.ir/article_5930.html
JasimAH,Al-Baram BM. Solutions of delay legendre’s and delay bessel’s problems by using matlab program. Journal of Physics: Conference Series. 2022;2322: 012055. http://dx.doi.org/10.1088/1742-6596/2322/1/012055
Jasim AH. Results on a pre-T2 space and pre-stability. Baghdad Sci J. 2019; 16(1): 111-115. http://dx.doi.org/10.21123/bsj.2019.16.1.0111.
AL-Jizani KH, Al-Delfi JK. An analytic solution for Riccati Matrix delay differential equation using coupled homotopy-Adomian Approach. Baghdad Science journal. 2022;19(4):800-804. https://doi.org/10.21123/bsj.2022.19.4.0800
ElmetwallyME,Ethiraju T, Osama M, Omar B. Oscillation of solutions to fourth-order delay differential equations with middle term. Open JMathSci. 2019; 3: 191-197. https://www.researchgate.net/publication/326463688_Oscillation_of_solutions_to_fourth-order_delay_differential_equations_with_middle_term
Saranya K, PiramananthamV,Thandapani E. Oscillation Results for Third-Order Semi-Canonical Quasi-Linear Delay Differential Equations. Nonauton. Dyn. Syst. 2021; 8:228–238. https://doi.org/10.1515/msds-20
Ladas G,Stavroulakis IP. On Delay Differential Inequalities of First Order. FunkcEkvacioj. 1982; 25(1982):105-113. https://www.researchgate.net/publication/238635026_On_delay_differential_inequalities_of_rst_order
Shyam S. S. ,Hammad A. , Omar B. On the qualitative behavior of the solutions to second-order neutral delay differential equations. J. Inequalities Appl. 2020; 256(1-12). https://doi.org/10.1186/s13660-020-02523-5
Gemenes L. P, Federson M. Oscillation by impulses for a second order delay differential equation. Computers and mathematics with applications. 2006;52(6-7):819-882. https://www.sciencedirect.com/science/article/pii/S0898122106002616
Santra SS, El-Nabulsi RA, Khedher KM. Oscillation of Second-Order Differential Equations withMultiple and Mixed Delays under a Canonical Operator. Mathematics 2021; 9: 1323.https://doi.org/10.3390/math9121323