فاعلية الكبسولات النانوية لمستخلص الفطر Metarhizium anisopliae في تثبيط انزيم acetylcholine esterase في يرقات الذباب المنزليMusca domestica
محتوى المقالة الرئيسي
الملخص
يعد الذباب المنزلي) (Musca domestica من اهم الحشرات الناقلة للمسببات المرضية للعديد من الامراض في العالم .ان استخدم تقنية النانوتكنلوجي في ادارة ومكافحة الافات يعد من الطرائق الحديثة والصديقة للبيئة . يهدف البحث الى امكانية التصنيع الحيوي للكبسولات النانوية للمنتجات الايضية للفطرو تحسين كفاءة المنتجات الايضية الثانوية وتقييم تاثيرها المثبط لانزيم استيل كولين استريز في يرقات الذباب المنزلي .استخدم مزيج المتساوي من المذيبات العضوية الاثيل استيت وثنائي كلوروميثان في استخلاص المنتجات الايضية للفطر Metarhizium anisopliae واستخدم البوليمر الصناعي(4000 Polyethylene glycol 4000 (PEG و البوليمر الطبيعي الكيتوسان في تحضير الكبسولات النانوية لمستخلص المنتجات الايضية للفطر . اظهرت نتائج فحص الحجم الحبيبي DLS ان حجم جزيئات المستخلص الخام و حجم الكبسولات النانوية النانوية المغلفة بالكيتوسان والمغلفة بالبولي اثلين كلايكول 4000 بلغ 610 و217 و 188 نانومتر على التوالي . اظهرت صور المجهر الالكتروني الماسح ان قطر المستخلص الخام و الكبسولات النانوية المغلفة بالكيتوسان والمغلفة بالبولي اثلين كلايكول 4000 بلغ معدلا قدره 547.5 و17.8 و 26.2 نانومتر على التوالي . كما اظهر اختبار FTIR ان المستخلص الخام للمنتجات الثانية للفطر يحتوي على العديد من المجاميع الوظيفية اهمها وجود الالكاينات والالكينات والامينات والكاربوكسيل والاروماتية فيما سجل وجود مجاميع الفينولات والكحول والامين والالكين وهاليد الالكيل للكبسولات النانوية المغلفة بالكيتوسان والبولي اثلين كلايكول . بينت النتائج ان المستخلص الخام للمنتجات الايضية للفطر والكبسولات النانوية ذات تاثير تثبيطي لانزيم الاستل كولين استريز بلغ اعلى نسبة تثبيط 53.2 % عند المعاملة بالكبسولات النانوية المغلفة بالبولي اثلين كلايكول بتركيز500 جزء بالمليون يليه المستخلص الخام للمنتجات الايضية للفطر بنسبة تثبيط بلغت 36.3 % بتركيز 50.000 جزء بالمليون ثم المعاملة بالكبسولات النانوية المغلفة بالكيتوسان بنسبة تثبيط 18.2 % بتركيز 500 جزء بالمليون . يتضح من النتائج ان وجود نسب من تثبيط انزيم الاستيل كولين استيريز هو احد ميكانيكيات التاثير المحتملة للمنتجات الايضية للفطر والكبسولات النانوية المحضرة منها.
Received 5/10/2022
Revised 12/12/2022
Accepted 14/12/2022
Published Online First 20/5/2023
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Onyenwe E , Okore O O, Ubiaru P C , Abel C . Housefly-borne helminth parasites of Mouau and its public health implication for the university community. Anim. Res. Int. 2016 ; 13(1): 2352–2358.
Geden C J , Nayduch D , Scott J G , Burgess IV E R , Gerry A C , Kaufman P E . House Fly (Diptera: Muscidae): Biology, Pest Status, Current Management Prospects, and Research Needs. J Integr Pest Manag, 2021; 12(1):1–38.https://doi.org/10.1093/jipm/pmaa021.
Köhl J, Kolnaar R , Ravensberg WJ. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science. 2019; Jul;10:1–19.
Yaseen AT. The Effect of Alcoholic and Aqueous Extract of Piper nigrum on the Larvae of Culex pipiens molestus Forskal (Diptera: Culicid). Baghdad Sci J. 2020 ; 17(1): 28-33 .
Casida JE, Durkin K A . Neuroactive insecticides: Targets, selectivity, resistance, and secondary effects. Annu Rev Entomol. 2013; 58, 99–117. https://doi.org/10.3390/su14116847.
Huang W, Wang S , Jacobs-Lorena M . Use of microbiota to fight mosquito-borne disease. Front Genet. 2020; 11: 196.
Gul HT, Saeed S, Khan FZA , Manzoor SA . Potential of nanotechnology in agriculture and crop protection: A review. Appl Sci Bus Econ. 2014; 1: 23–28.
Zhang Y, Maoyu L, Xiaomei G, Yongheng C, Ting L . Nanotechnology in cancer diagnosis: progress, challenges and opportunities . J Hematol Oncol. 2019 ; 12:137.
Parisi C , Vigani M , Rodriguez-Cerezo E . Agricultural nanotechnologies: What are the current possibilities?. Nano Today. 2015; 10: 124–127.
Al Hilfy AA A, Al Shammari H I , Kathiar SA. Toxicity of Nanoemulsion of Castor Oil on the Fourth larval stage of Culex quinquefsciatus under Laboratory Conditions . Baghdad Sci J. 2022; 19 (5): 99-107 . https://doi.org/10.21123/bsj.2022.6638
Kouzegaran VJ , Farhadi K . Green synthesis of sulphur nanoparticles assisted by a herbal surfactant in aqueous solutions. Micro Nano Lett.. 2017; 12: 329-334.
Malakar Y, Lacey J, Bertsch P M . Towards responsible science and technology: How nanotechnology research and development is shaping risk governance practices in Australia. Humanit Soc Sci Commun 2022; 9(17): 1-14. https://doi.org/10.1057/s41599-021-01028-w.
Kumar MY, Ravi A. Extraction and characterization of chitosan from shrimp waste for application in the feed industry. Int J Environ Sci Technol.. 2017; 6(4): 2548-2557.
Morin-Crini , N , Lichtfouse E, Torri G, Crini G . Fundamentals and Applications of Chitosan. In: Crini, G., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 35. Sustain. Agric Res. 2019 ; 35. Springer Cham. https://doi.org/10.1007/978-3-030-16538-3.
Rebecca A O, Angie B K , Brent S S. . Enlightening advances in polymer bioconjugate chemistry: light-based techniques for grafting to and from bio macromolecules. Chem Sci., 2020; 11: 5142 -5156. https://doi.org/10.1039/d0sc01544j.
Munawar AM , Jaweria TMS , Kishor MW , Ellen KW. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. J Pharmaceutics. 2017; 9(4): 1-26. https://doi.org/10.3390/pharmaceutics9040053.
Zafar J , Shoukat R F , Zhang Y , Freed S , Xu X , Jin F . Metarhizium anisopliae Challenges Immunity and Demography of Plutella xylostella. Insects. 2020; 11(10): 694. https://doi.org/10.3390/ insects11100694.
Vivekanandhan P, Swathy K, Kalaimurugan D, Ramachandran M , Yuvaraj A , Kumar A N. Larvicidal toxicity of Metarhizium anisopliae metabolites against three mosquito species and nontargetingorganisms. PLoSONE. 2020; 15(5): 1-18. 0232172. https://doi.org/ 10.1371/journal.pone.0232172
Berestetskiy A , Hu Q . The Chemical Ecology Approach to Reveal Fungal Metabolites for Arthropod Pest Management. Microorganisms. 2021; 9: 1397. https://doi.org/10.3390/microorganisms9071379.
Hoang N H , LeThanh T , Sangpueak R , Treekoon J , Saengchan C, Thepbandit W, et al . Chitosan Nanoparticles-Based Ionic Gelation Method: A Promising Candidate for Plant Disease Management. Polymers 2022; 14: 62. https://doi.org/ 10.3390/polym14040662 .
Wu J, Du C, Zhang J, Yang B, Cuthbertson A G S, Ali S. Synthesis of Metarhizium anisopliae–Chitosan Nanoparticles and Their Pathogenicity against Plutella xylostella (Linnaeus). Microorganisms 2022; 10(1): 1. https://doi.org/10.3390/microorganisms10010001.
Paralikar P, Rai M . Bio inspired synthesis of sulphur nanoparticles using leaf extract of four medicinal plants with special reference to their antibacterial activity. IET Nanobiotechnol. 2017; 12: 25-31.
Wang X S , Xu J, Wang X M , Qiu B L , Cuthbertson A G S. ,Du C L et al . Isaria fumosorosea-based-zero-valent iron nanoparticles affect the growth and survival of sweet potato whitefly, Bemisia tabaci (Gennadius). Pest Manag Sci. 2019; 75: 2174–2181.
Khairan K, Zahraturriaz , Jalil Z . Green synthesis of sulphur nanoparticles using aqueous garlic extract (Allium sativum). Rasayan J Chem. 2019 ;12: 50-57.
Łopusiewicz Ł , Mazurkiewicz-Zapałowicz K , Tkaczuk C . Chemical changes in spores of the entomopathogenic fungus Metarhizium robertsii after exposure to heavy metals, studied through the use of FTIR spectroscopy. J Elem. 2020; 25(2): 487-499. https://doi.org/10.5601/jelem.2019.24.4.1803
Huang Q, Liu M, Feng J, Liu Y. Effect of dietary benzoxadiazole on larval development, cuticle enzyme and antioxidant defense system in housefly (Musca domestica L.). Pest Biochem Physiol. 2008; 90: 119–125.
Attaullah, Zahoor M K, Zahoor M A, Mubarik M S, Rizvi H, Majeed H N et al. Insecticidal, biological and biochemical response of Musca domestica (Diptera: Muscidae) to some indigenous weed plant extracts. Saudi J Biol Sci. 2020; 27(1): 106-116. https://doi.org/10.1016/j.sjbs.2019.05.009.
Wu J, Du C, Zhang J, Yang B, Cuthbertson A G S, Ali S. Synthesis of Metarhizium anisopliae–Chitosan Nanocapsules and Their Pathogenicity against Plutella xylostella (Linnaeus). Microorganisms 2022; 10. 1. https://doi.org/10.3390/microorganisms10010001.
Vey A, Hoagland R, Butt T M. Toxic metabolites of fungal biocontrol agents. Fungi as biocontrol agents progress, problems and potential. International.2001. Chap 12: 311-346. CABI Publishing, Wallingford, UK. http://www.cabdirect.org/abstracts/20013125227.html.
Namasivayam S K R, Bharani R S A, Karunamoorthy K. Insecticidal fungal metabolites fabricated chitosan nanocomposite (IM-CNC) preparation for the enhanced larvicidal activity—An effective strategy for green pesticide against economic important insect pests. Int. J Biol Macromol. 2018; 120: 921–944.
Han J, Zhou Z , Yin R , Yang D , Nie J. Alginate chitosan /hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization. Int J Biol Macromol. 2010; 46: 199–205.
Vivekanandhan P., Swathy K, Murugan A C, Krutmuang P. Insecticidal Efficacy of Metarhizium anisopliae Derived Chemical Constituents against Disease-Vector Mosquitoes. J Fungi. 2022; 8: 300. https://doi.org/10.3390/jof8030300.
Bhavya M L, Obulaxmi S., Devi, S S. Efficacy of Ocimum tenuiflorum essential oil as grain protectant against coleopteran beetle, infesting stored pulses. J Food Sci Technol. 2021; 58: 1611–1616.
Vivekanandhan P, Swathy K, Thomas A, Kweka E J; Rahman A, Pittarate S. et al. Insecticidal Efficacy of Microbial-Mediated Synthesized Copper Nano-Pesticide against Insect Pests and Non-Target Organisms. Int J Environ Res Public Health 2021; 18: 10536.
Liu, L J, Alam M S, Hirata K, Matsuda K, Ozoe Y. Actions of quinolizidine alkaloids on Periplanta Americana nicotinic acetylcholine receptors. Pest Manag Sci. 2008; 64: 1222–1228. https://doi.org/10.1002/ps.1622.
Knutsson S. Towards Mosquitocides for Prevention of Vector-Borne Infectious Diseases Discovery and Development of Acetylcholinesterase 1 Inhibitors. Doctoral Thesis, Department of Chemistry Umeå University, 2016 . http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-119924
Šagud I , Hrvat NM , Grgičević A , Tena Č , Josipa H , Milena D. et al . Design, synthesis and cholinesterase inhibitory properties of new oxazole benzylamine derivatives, Journal of Enzyme Inhibition and Medicinal Chemistry, 2020; 35(1): 460-467. https://doi.org/10.1080/14756366.
Yadav R N, Mahtab M R, Kumar R , Singh H B , Zaidi N W. Secondary Metabolites of Metarhizium spp. and Verticillium spp. and Their Agricultural Applications . In book: Secondary Metabolites of Plant Growth Promoting Rizomicroorganisms . 2019: 27-58. https://doi.org/10.1007/978-981-13-5862-3_2.
Samuels R , Reynolds SE , Charnley AK . Calcium channel activation of insect muscle by destruxins, insecticidal compounds produced by the entomopathogenic fungus Metarhizium anisopliae (Metch.). Comp Bio chem Physiol. 1988; 90:403–412
Wu Sh , Zhou Y , Li Z . Bio catalytic selective functionalization of alkenes via single-step and one-pot multi-step reactions. Chem. Commun.2019; 55: 883-896. https://doi.org/10.1039/C8CC07828A .
Shi L w , Zhang J , Zhao M , Tang Sh , Xu Ch , Zhang W , et al . Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. J Nanoscale. 2021; 13: 10748-10764.
Jia M, Cao G, Yibo L, Xiongbing T, Wang G , Xiangqun N , et al . Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen). Sci Rep 2016; 6: 28424. https://doi.org/10.1038/srep28424
Archita Sh, Kritika S, Jasreen K, Madhu K. Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatal Agric Biotechnol. 2019;18: 101079. https://doi.org/10.1016/j.bcab.2019.101079