النتائج المصلية الدموية كإشارات مبكرة في البلطي النيلي اوريكروميس نيلوتيكس المعالج بكلوريد البنزالكونيوم
محتوى المقالة الرئيسي
الملخص
الهدف الرئيسي من هذه الدراسة هو تقييم سمية كلوريد البنزالكونيوم في الاستزراع المائي ، باستخدام المؤشرات المصلية الدموية لسمكة البلطي النيلي Oreochromis niloticus كمؤشرات حيوية. بعدما تعرضت الأسماك لثلاث مستويات من كلوريد البنزالكونيوم 0.1 ، 0.25 ، 0.50 ، و 1 ملغم / لتر في الأحواض المائية لفترتين زمنيتين 21 و 42 يومًا ، تم تقييم الفحص الميكروبيولوجي في أحواض الأسماك ، بالإضافة إلى معايير الدم. أشارت نتائج الفحص البكتيري أنه باستثناء متوسط الفرق بين المعاملة الثانية والثالثة من كلوريد البنزالكونيوم ( فرق غير معنوي – 42 يوم) فقد أظهرت النتائج فروقاً كبيرة عند مقارنة باقي المتوسطات في جميع المعاملات (0.05 ≥ P ≤ 0.01). انخفضت مؤشرات الدم الرئيسية ككرات الدم الحمراء والهيموجلوبين بشكل متفاوت عقب التعرض للثلاث تركيزات الأولي عند مقارنتها بمجموعة السيطرة، ثم بلغت ذروتها عند أعلي تركيز من كلوريد البنزالكونيوم رغم عدم وجود فروق احصائية عند مقارنتها بمجموعة السيطرة (باستثناء الهيموجلوبين – 42 يوم) . على العكس من ذلك ، ارتفعت كرات الدم البيضاء بشكل سريع عند التركيز الأول من كلوريد البنزالكونيوم خاصة في الفترة 42 يوما بالمقارنةً نتائج مجموعة السيطرة. تغيرت متوسطات كرات الدم البيضاء بعد التعرض للتركيزين الثاني و الثالث ، قبل أن تبلغ ذروتها عند أعلي تركيز من كلوريد البنزالكونيوم. أظهرت MCV و MCH و MCHC تقلبًا طفيفأ بين مجموعة السيطرة والأسماك المعالجة . فيما يتعلق بالنتائج البيوكيميائية ، أظهر متوسط مستويات الكوليسترول والدهون الثلاثية نمطاُ غير منتظم حسب تركيز المعالجة الكيميائية. تقلبت مستويات ALT و AST بين أسماك مجموعة السيطرة و مجموعة المعالجة الكيميائية الثلاث الأولي ، قبل أن تزداد عند التركيز الأعلى مع وجود فروق معنوية(باستثناءAST عند مقارنة التركيزين 3 و4 من كلوريد البنزالكونيوم عقب 42 يوم حيث كانت الفروق للمتوسطات غير معنوية من الناحية الاحصائية) عند مقارنة مجموعة السيطرة , BAC1,2,3 بالمجموعة التي تعرضت ل BAC4. بعد التعرض لكلوريد البنزالكونيوم ، بقيت المعلمات الأخرى ، بما في ذلك البروتين واليوريا كما هي في مجموعة السيطرة .أشار التغيير في بعض علامات الدم المصلية علي أن هناك استجابة حيوية فيسيولوجية للإجهاد الناجم عن التعرض للمبيدات الحيوية.
Received 16/10/2022
Revised 18/05/2023
Accepted 21/05/2023
Published 20/06/2023
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Pereira BMP, Tagkopoulos I. Benzalkonium Chlorides: Uses, Regulatory Status, and Microbial Resistance. Appl Environ Microbiol. 2019; 85(13): e00377-00319. https://doi.org/10.1128/AEM.00377-19
Russo C, Kundi M, Lavorgna M, Parrella A, Isidori M. Benzalkonium chloride and anticancer drugs in binary mixtures: reproductive toxicity and genotoxicity in the freshwater crustacean Ceriodaphnia dubia. Arch Environ Contam Toxicol. 2018 ; 74(4): 546-556. https://doi.org/10.1007/s00244-017-0473-y
Christen V, Faltermann S, Brun NR, Kunz PY, Fent K. Cytotoxicity and molecular effects of biocidal disinfectants (quaternary ammonia, glutaraldehyde, poly (hexamethylene biguanide) hydrochloride PHMB) and their mixtures in vitro and in zebrafish eleuthero-embryos. Sci Total Environ. 2017; 586: 1204-1218. https://doi.org/10.1016/j.scitotenv.2017.02.114
He Z-W, Liu W-Z, Tang C-C, Liang B, Guo Z-C, Wang L, et al. Performance and microbial community responses of anaerobic digestion of waste activated sludge to residual benzalkonium chlorides. Energy Convers Manag. 2019 ; 202: 112211. https://doi.org/10.1016/j.enconman.2019.112211
Barber OW, Hartmann EM. Benzalkonium chloride: A systematic review of its environmental entry through wastewater treatment, potential impact, and mitigation strategies. Crit Rev Environ Sci Technol. 2022; 52(15): 2691-2719. https://doi.org/10.1080/10643389.2021.1889284
Pati SG, Arnold WA. Comprehensive screening of quaternary ammonium surfactants and ionic liquids in wastewater effluents and lake sediments. Environ Sci Process Impacts 2020; 22(2): 430-441. http://doi.org/10.1039/c9em00554d
DeLeo PC, Huynh C, Pattanayek M, Schmid KC, Pechacek N. Assessment of ecological hazards and environmental fate of disinfectant quaternary ammonium compounds. Ecotoxicol Environ Saf. 2020; 206(2020): 111116. http://doi.org/10.1016/j.ecoenv.2020.111116
Kim T-K, Jang M, Hwang YS. Adsorption of benzalkonium chlorides onto polyethylene microplastics: Mechanism and toxicity evaluation. J Hazard Mater. 2022; 426: 128076. https://doi.org/10.1016/j.jhazmat.2021.128076
Hora PI, Pati SG, McNamara PJ, Arnold WA. Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. Environ Sci Technol Lett. 2020; 7(9): 622-631. https://doi.org/10.1021/acs.estlett.0c00437
Elersek T, Zenko M, Filipic M. Ecotoxicity of disinfectant benzalkonium chloride and its mixture with antineoplastic drug 5-fluorouracil towards alga Pseudokirchneriella subcapitata. Peer J. 2018; 6: e4986. http://doi.org/10.7717/peerj.4986
Short FL, Lee V, Mamun R, Malmberg R, Li L, Espinosa MI, et al. Benzalkonium chloride antagonises aminoglycoside antibiotics and promotes evolution of resistance. EBio Medicine 2021; 73: 103653. http://doi.org/10.1016/j.ebiom.2021.103653
Antunes SC, Nunes B, Rodrigues S, Nunes R, Fernandes J, Correia AT. Effects of chronic exposure to benzalkonium chloride in Oncorhynchus mykiss: cholinergic neurotoxicity, oxidative stress, peroxidative damage and genotoxicity. Environ Toxicol Pharmacol. 2016; 45: 115-122. https://doi.org/10.1016/j.etap.2016.04.016
Ikisa K, Babatunde B, Hart A. Acute toxicity of benzalkonium chloride mixture with treated produced water to juveniles of freshwater tilapia-Oreochromis niloticus. J Appl Sci Enviro Manag. 2019; 23(6): 1169-1174. http://doi.org/10.4314/jasem.v23i6.26
Gheorghe S, Mitroi DN, Stan MS, Staicu CA, Cicirma M, Lucaciu IE, et al. Evaluation of Sub-Lethal Toxicity of Benzethonium Chloride in Cyprinus carpio Liver. Appl Sci. 2020; 10(23): 8485. https://doi.org/10.3390/app10238485
Mishra S, Das R, Das B, Choudhary P, Rathod R, Giri B, et al. Status of Aqua-medicines, drugs and chemicals use in India: A Survey Re-port. J Aquac Fish. 2017; 1(004). http://doi.org/10.24966/AAF-5523/100004
Khan S, Rehman A, Shah H, Aadil RM, Ali A, Shehzad Q, et al. Fish Protein and its derivatives: The novel applications, bioactivities, and their functional significance in food products. Food Rev Int. 2022 ; 38(8): 1607-1634. https://doi.org/10.1080/87559129.2020.1828452
Alsaeed RD, Alaji B, Ibrahim M. Modeling Jar Test Results Using Gene Expression to Determine the Optimal Alum Dose in Drinking Water Treatment Plants. Baghdad Sci J. 2022 ; 19(5): 951-965. https://doi.org/10.21123/bsj.2022.6452
Said REM, Said AS, Saber SAL, ElSalkh BAE. Biomarker Responses in Sclerophrys regularis (Anura: Bufonidae) Exposed to Atrazine and Nitrate. Pollution 2022; 8(4): 1387-1397. https://doi.org/10.22059/POLL.2022.339894.1386
Hu Z, Li R, Xia X, Yu C, Fan X, Zhao Y. A method overview in smart aquaculture. Environ Monit Assess. 2020; 192(8): 493. https://doi.org/10.1007/s10661-020-08409-9
Jahangiri L, Esteban MÁ. Administration of probiotics in the water in finfish aquaculture systems: a review. Fishes 2018; 3(3): 33. https://doi.org/10.3390/fishes3030033
Nathanailides C, Kolygas M, Choremi K, Mavraganis T, Gouva E, Vidalis K, et al. Probiotics Have the Potential to Significantly Mitigate the Environmental Impact of Freshwater Fish Farms. Fishes 2021; 6(4): 76. https://doi.org/10.3390/fishes6040076
Assefa A, Abunna F. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet Med Int. 2018; 2018: 10 https://doi.org/10.1155/2018/5432497
Kang H-S, Lee S-B, Shin D, Jeong J, Hong J-H, Rhee G-S. Occurrence of veterinary drug residues in farmed fishery products in South Korea. Food Control. 2018; 85: 57-65. https://doi.org/10.1016/j.foodcont.2017.09.019
Leal JF, Neves MGP, Santos EB, Esteves VI. Use of formalin in intensive aquaculture: properties, application and effects on fish and water quality. Rev Aquac. 2018; 10(2): 281-295. https://doi.org/10.1111/raq.12160
Gallani SU, Valladão GMR, Assane IM, Alves LdO, Kotzent S, Hashimoto DT, et al. Motile Aeromonas septicemia in tambaqui Colossoma macropomum: Pathogenicity, lethality and new insights for control and disinfection in aquaculture. Microb Pathog. 2020 ; 149: 104512. https://doi.org/10.1016/j.micpath.2020.104512
FAO. The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. 2018 https://www.fao.org/3/i9540en/i9540en.pddf
Lavorgna M, Russo C, D'Abrosca B, Parrella A, Isidori M. Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems. Environ Pollut. 2016; 210: 34-39. https://doi.org/10.1016/j.envpol.2015.11.042
Farrag MMS, Said RE, Elmileegy IMH, Abou Khalil NS, Abdel allah ESA, El-Sawy MF, et al. Effects of penconazole and copper nanoparticle fungicides on redbelly tilapia, Coptodon zillii (Gervais, 1848): Reproductive outcomes. Int J Aquat Biol. 2022; 9(6): 370-382. http://doi.org/10.22034/ijab.v9i6.1196
Bhatnagar N. Dacie and Lewis Practical Haematology (12th edition) By B. J. Bain, I. Bates and M. A. Laffan, Elsevier, London, 2017. Br J Haematol. 2017; 178(4): 652. https://doi.org/10.1111/bjh.14872
Reitman S, Frankel S. A colorimetric method for determination of serum aspartate and alanine aminotransferases. Am J Clin Pathol. 1975; 28(1): 56. https://doi.org/10.1093/ajcp/28.1.56
Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals Clin Biochem. 1969; 6(1): 24-27. https://doi.org/10.1177/000456326900600108
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18(6): 499-502. https://doi.org/10.1093/clinchem/18.6.499
Canli EG, Dogan A, Canli M. Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environ Toxicol Pharmacol. 2018; 62: 181-187. https://doi.org/10.1016/j.etap.2018.07.009
Qassim B, Heino M, Morabito D. Uptake of Three Pharmaceuticals by Beans (Phaseolus vulgaris L.) from Contaminated Soils. Baghdad Sci J. 2020; 17(3): 0733-0742. http://dx.doi.org/10.21123/bsj.2020.17.3.0733
Fuentes-Gandara F, Pinedo-Hernández J, Marrugo-Negrete J, Díez S. Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environ Geochem Health. 2018; 40(1): 229-242. https://doi.org/10.1007/s10653-016-9896-z
Pereira BMP, Wang X, Tagkopoulos I. Biocide-induced emergence of antibiotic resistance in Escherichia coli. Front Microbiol. 2021; 12: 640923. https://doi.org/10.3389/fmicb.2021.640923
Kampf G. Challenging biocide tolerance with antiseptic stewardship. J Hosp Infect. 2018 Sep 11; 100(3): e37-e39. http://doi.org/10.1016/j.jhin.2018.07.014
Deutschle T, Porkert U, Reiter R, Keck T, Riechelmann H. In vitro genotoxicity and cytotoxicity of benzalkonium chloride. Toxicol In Vitro. 2006; 20(8): 1472-1477. http://doi.org/10.1016/j.tiv.2006.07.006
Omojowo FS, Sogbesan OA. Fish losses due to bacterial flora and infections of fishes in Kainji Lake Area, Nigeria: A Review. Niger Vet J. 2005; 24(2): 41-47. http://doi.org/10.4314/nvj.v24i2.3453
Mahboub HH, Khedr MH, Elshopakey GE, Shakweer MS, Mohamed DI, Ismail TA, et al. Impact of silver nanoparticles exposure on neuro-behavior, hematology, and oxidative stress biomarkers of African catfish (Clarias gariepinus). Aquaculture 2021; 544: 737082. https://doi.org/10.1016/j.aquaculture.2021.737082
Gallego-Ríos SE, Peñuela GA, Martínez-López E. Updating the use of biochemical biomarkers in fish for the evaluation of alterations produced by pharmaceutical products. Environ Toxicol Pharmacol. 2021; 88: 103756. https://doi.org/10.1016/j.etap.2021.103756
Ahmed I, Reshi QM, Fazio F. The influence of the endogenous and exogenous factors on hematological parameters in different fish species: a review. Aquac internat. 2020; 28(3): 869-899. https://doi.org/10.1007/s10499-019-00501-3
Hertika AMS, Supriatna S, Darmawan A, Nugroho BA, Handoko AD, Qurniawatri AY, et al. The hematological profile of Barbonymus altus to evaluate water quality in the Badher bank conservation area, Blitar, East Java, Indonesia. Biodiversitas. 2021; 22(5): 2532-2541. https://doi.org/10.13057/biodiv/d220510
Hemalatha D, Muthukumar A, Rangasamy B, Nataraj B, Ramesh M. Impact of sublethal concentration of a fungicide propiconazole on certain health biomarkers of Indian major carp Labeo rohita. Biocatal Agric Biotechnol. 2016; 8: 321-7. https://doi.org/10.1016/j.bcab.2016.10.009
Ucar A, Özgeriş FB, Yeltekin AÇ, Parlak V, Alak G, Keleş MS, et al. The effect of N-acetylcysteine supplementation on the oxidative stress levels, apoptosis, DNA damage, and hematopoietic effect in pesticide-exposed fish blood. J Biochem Mol Toxicol. 2019; 33(6): e22311. https://doi.org/10.1002/jbt.22311
Said REM, Ashry M, AbdAllah EM. The use of biomarkers in the Nile Tilapia (Oreochromis niloticus) as biological signals to track Nile contamination in Egypt. Egypt J Aquat Biol Fish. 2021; 25(5): 203-214. http://doi.org/10.21608/ejabf.2021.198551
Soliman HAM, Hamed M, Sayed AEH. Investigating the effects of copper sulfate and copper oxide nanoparticles in Nile tilapia (Oreochromis niloticus) using multiple biomarkers: the prophylactic role of Spirulina. Environ Sci Pollut Res Int. 2021; 28(23): 30046-30057. http://doi.org/10.1007/s11356-021-12859-0
Hamed M, Osman AGM, Badrey AEA, Soliman HAM, Sayed AEH. Microplastics-Induced Eryptosis and Poikilocytosis in Early-Juvenile Nile Tilapia (Oreochromis niloticus). Front Physiol. 2021; 12: 742922. http://doi.org/10.3389/fphys.2021.742922
Burgos-Aceves MA, Lionetti L, Faggio C. Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish. Sci Total Environ. 2019; 670: 1170-1183. https://doi.org/10.1016/j.scitotenv.2019.03.275
Shah N, Khisroon M, Shah SSA. Assessment of copper, chromium, and lead toxicity in fish (Ctenopharyngodon idella Valenciennes, 1844) through hematological biomarkers. Environ Sci Pollut Res. 2020; 27(26): 33259-33269. https://doi.org/10.1007/s11356-020-09598-z
Gouda AMR, Hagras AE, Okbah MA, El-Gammal MI. Influence of the Linear Alkylbenzene Sulfonate (LAS) on hematological and biochemical parameters of Nile Tilapia, Oreochromis niloticus. Saudi J Biol Sci. 2022; 29(2): 1006-1013. http://doi.org/10.1016/j.sjbs.2021.09.074
Misra V, Kumar V, Pandey SD, Viswanathan P. Carbohydrate metabolism changes in fish fingerlings and yearlings exposed to linear alkyl benzene sulphonate. Water Air Soil Pollut. 1990; 50(3): 233-239. https://doi.org/10.1007/bf00280625
Feng R, Ma LJ, Wang M, Liu C, Yang R, Su H, et al. Oxidation of fish oil exacerbates alcoholic liver disease by enhancing intestinal dysbiosis in mice. Commun Biol. 2020; 3: 481. https://doi.org/10.1038/s42003-020-01213-8
Monfared AL, Salati AP. Histomorphometric and biochemical studies on the liver of rainbow trout (Oncorhynchus mykiss) after exposure to sublethal concentrations of phenol. Toxicol Ind Health. 2013; 29(9): 856-861. https://doi.org/10.1177/0748233712451765
Osman AGM, AbouelFadl KY, Abd El Reheem AEBM, Mahmoud UM, Kloas W, Moustafa MA. Blood Biomarkers in Nile tilapia Oreochromis niloticus niloticus and African Catfish Clarias gariepinus to Evaluate Water Quality of the River Nile. J fish sci com 2018; 12(1). http://doi.org/10.21767/1307-234x.1000141
Herron JM, Hines KM, Tomita H, Seguin RP, Cui JY, Xu L. Multi-omics investigation reveals benzalkonium chloride disinfectants alter sterol and lipid homeostasis in the mouse neonatal brain. Toxicol Sci. 2019; 171(1): 32-45. http://doi.org/10.1093/toxsci/kfz139
Gabriel U, George A. Plasma enzymes in Clarias gariepinus exposed to chronic levels of round up (glyphosate). Environ Ecol.2005; 23(2): 271-276. https://ssrn.com/abstract=3201447
Lee S, Saravanan M, Kim S-A, Rhee J-S. Long-term exposure to antifouling biocide chlorothalonil modulates immunity and biochemical and antioxidant parameters in the blood of olive flounder. Comp. Biochem. Physiol. C,: Toxicol Pharmacol. 2022; 257: 109337. https://doi.org/10.1016/j.cbpc.2022.109337
Abbas H, El-Badawi A. Use of hematological and biochemical parameters and histological changes to assess the toxicity of drumstick tree (Moringa oleifera) seeds extract on Tilapia (Oreochromis niloticus) fish. Egypt J Aquat Biol Fish. 2014; 18(3): 21-40. https://doi.org/10.21608/ejabf.2014.2215