تأثير المستخلص القلويدي لأوراق Moringa oleifera Lam. في تطور وخصوبة سكان حشرة خنفساء اللوبيا الجنوبية Callosobruchus maculatus (F.) (Coleoptera: Bruchidae)
محتوى المقالة الرئيسي
الملخص
تعد خنفساء اللُّوبْياء الجنوبية Callosobruchus maculatus وَاحِدة مِن أَكثَر الآفَات الحشريَّة اِنْتشارًا وتدْميرًا لِلْبقوليَّات المخْزونة ، اذ تسبب خسائر كَبِيرَة أَثنَاء التَّخْزين ، وتقليل في الوزْن الصَّافي لِلْمحاصيل ، واضعاف قُدْرتِهَا على النُّموِّ الامر الذي يؤدِّي إِلى تَقلِيل جَودَة المحاصيل . لِذَا أُجرِيت هَذِه الدِّراسة لِتحْدِيد تاثير تراكيز مختلفة 1000 ، 2000 و3000 جزء بالمليون من المستخلص القلويدي لاوراق نبات المورينكا Moringa oleifera في بعض مؤشرات النمو للحشرة متمثلة بجداول الحياة والخصوبة ذات الجنسين. تمَّ اِسْتخْدام هذَا المسْتخْلص كمبيد حيوي للحشرة فضلا عن عدم سُميَّة لِلْإنْسان والْبيئة بِشَكل عامٍّ . أَظهرَت النتائج أنَّ أقلَّ مُعدَّل بَقَاء للحشرة كان 49 % بِترْكِيز 1000 و 2000 جُزْء فِي الملْيون مُقَارنَة بمعاملة السيطره وَالتِي كَانَت 77 % . كمَا أنَّ أقلَّ مُعدَّل للتعويض الصافي ( Ro ) كان 4.76 انثى / انثى / جيل بِترْكِيز 1000 جُزْء فِي الملْيون مقارنة عند معاملة السيطرة 10.34 انثى / انثى / جيل ، بيْنمَا سجل أقلَّ مُعدَّل لفَقْس البيْض 62 % بِترْكِيز 3000 جُزْء فِي الملْيون مُقَارنَة مع معاملة السَّيْطرة 88 %. وبالْمثْل ، اِنْخفَضتْ نِسْبَة الذُّكور إِلى الإنَاث بَعْد اِسْتخْدام التراكيز الثَّلاثة ، ومعْظمهَا بِترْكِيز 1000 جُزْء فِي الملْيون ، حَيْث كَانَت النِّسْبة ( ذُكُور : إِنَاث ) 1.31 : 0.69 مُقَابِل 1.11 : 0.89 لِلسَّيْطرة . بِشَكل عامٍّ ، أنَّ مُعدَّل البقَاء ، ونسب انتاجية الاناث تَأثرَت بِشَكل سَلبِي مِمَّا يؤشر الى اِنخِفاض فِي سكان الحشرات في الجيل القادم . يَتضِح مِمَّا سبق أنَّ المسْتخْلص القلَويديَّ لِأوْرَاق نَبَات المورينْجَا فَعَّال وله تَأثِير على سكان الحشرة ، وَيمكِن أن يَكُون وَسِيلَة صَدِيقَة لِلْبيئة لِلسَّيْطرة على تَعْداد C . maculatus
Received 22/10/2022
Revised 02/01/2023
Accepted 04/01/2023
Published Online First 20/08/2023
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Xiong H, Shi A, Mou B, Qin J, Motes D, Lu W, et al. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp). PLoS One .2016; 11(8): e0160941. https://doi.org/10.1371/journal.pone.0160941
Alfa AA, Tijani KB, Omotoso OD, Junaidu Y, Sezor AA. Nutritional values and medicinal health aspects of brown, brown-black and white cowpea (Vigna unguiculata L. Walp.) grown in Okene, Kogi state, Nigeria. Asian J Adv Res Rep. 2020; 14: 114-124. https://doi.org/10.9734/AJARR/2020/v14i430348
Gomes CD, Sá JMD, Godoy MSD, Molina-Rugama AJ, Oliveira LLD, Pastori PL. Bioactivity of plant extracts from caatinga on cowpea weevil, Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). Rev Bras de Eng Agricola e Ambient. 2022; 26: 541-546. https://doi.org/10.1590/1807-1929/agriambi.v26n7p541-546
Nisar MS, Ali S , Hussain T, Ramzan H, Niaz Y, Haq, IU, et al . Toxic and repellent impacts of botanical oils against Callosobruchus maculatus (Bruchidae: Coleoptera) in stored cowpea [Vigna unguiculata (L.) Walp.]. Plos One. 2022; 17(5): 0267987. https://doi.org/10.1371/journal.pone.0267987
Morais FS, Canuto K M, Ribeiro PR, Silva AB, Pessoa OD, Freitas CD, et al . Insecticidal Compound from Himatanthus drasticus Latex against Cowpea Infestation by Callosobruchus maculatus (Coleoptera: Chrysomelidae). J Agric Food Chem. 2021; 69(17): 5049-5058. https://doi.org/10.1021/acs.jafc.1c01177
de Andrade EKV, Rodrigues R, Bard GDCV, da Silva Pereira L, Baptista KEV, Cavalcanti TFM et al . Identification, biochemical characterization and biological role of defense proteins from common bean genotypes seeds in response to Callosobruchus maculatus infestation. J Stored Prod. Res. 2020; 87: 101580. https://doi.org/10.1016/j.jspr.2020.101580
Phillips TW, Throne JE. Biorational approaches to managing stored-product insects. Annu. Rev Entomol. 2010; 55(1): 375-397. https://doi.org/10.1146/annurev.ento.54.110807.090451
Mahmoo EA, Mzahem NA. The Efficiency of Terpenes extracts of Eucalyptus camaldulensis Seed to control larval stage of Callosobruchus maculates (Coleoptera: Bruchidae). Baghdad Sci J. 2016; 13(4): 625-630. http://dx.doi.org/10.21123/bsj.2016.13.4.0625
Al-Jubury HMK, Baker SZ, Ahmed ZS. Studying the effectiveness of bio-prepared silver nanoparticles by the Beauveria bassiana fungus in some biological aspects for cowpea weevil (Callosobruchus maculatus (Fab)) in vitro. Euphrates J Agric Sci. 2020; 12(2): 113- 131. ISSN 2072-3875
Edwin IE, Fidelis AO. Evaluation of Repellent Potential of Some Botanical Products against Cowpea Weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae). Jordan J Biol Sci. 2019; 12(3): 267 – 273. ISSN 1995-6673
Ahmed N, Alam M, Saeed M, Ullah H, Iqbal T, Al-Mutairi KA, et al. Botanical insecticides are a non-toxic alternative to conventional pesticides in the control of insects and pests. In Global Decline of Insects. 2021; Oct 25: 198. https://doi.org/10.5772/intechopen.100416
Yaseen AT, Sulaiman KA. Insecticidal Activity of Some Chemicals of Mosquitoes Culex pipiens molestus Forskal . Baghdad Sci .J . 2021 Mar. 30 ;18(1(Suppl.): 0716. https://doi.org/10.21123/bsj.2021.18.1(Suppl.).0716
Abdul-Rahman DB, Mohammed AM. Insecticidal activity of aqueous extracts of some medicinal plants on stages of south beetle beans Callosobruchus maculatus (Fab.). J Sci Educ Technol. 2019; 28(2): 185-195.
Altinkoy HD, Dura O, Kepenekci I. Determination of the effectiveness of nano silver additive aqueous extract of Moringa oleifera L.(Brassicales: Moringaceae) against root lesion nematode [Pratylenchus thornei Sher & Allen) Chitwood (Nematoda: Pratylenchidae)] under laboratory conditions. J Glob Innov Agric Soc Sci. 2020; 8: 19-22.https://doi.org/10.22194/JGIASS/8.886 http://www.jgiass.com
Parihar S, Chattarpal S, Hooda S. Moringa oleifera Extract- A Miracle Tree. Sch Acad J Pharm. 2022 Jan; 11(1): 1-5. https://doi.org/10.36347/sajp.2022.v11i01.001
da Silva IM, Zanuncio JC, Brügger BP, Soares MA, Zanuncio AJ, Wilcken CF, Tavares WD, Serrão JE, Sediyama CS. Selectivity of the botanical compounds to the pollinators Apis mellifera and Trigona hyalinata (Hymenoptera: Apidae). Sci. Rep. 2020 Mar 16; 10(1): 1-8. https://doi.org/10.1038/s41598-020-61469-2.
Oraibi DH, Ali NA. Effect of Adding Alcoholic and Nano Alcoholic Extract Of Moringa Oleifera Leaves to Drinking Water on the Biochemical Blood Traits for Laying Hens Lohmann Brown. Indian J Forensic Med Toxicol. 2021; 15(3): 5467. https://doi.org/10.37506/ijfmt.v15i3.16626
Oladeji OS, Odelade KA, Oloke JK. Phytochemical screening and antimicrobial investigation of Moringa oleifera leaf extracts. Afr J Sci Technol. 2020 Jan 2; 12(1): 79-84. .https://doi.org/10.1080/20421338.2019.1589082
Uzor PF. Alkaloids from plants with antimalarial activity: a review of recent studies. Hindawi Evid Based Complement Alternat Med. 2020; https://doi.org/10.1155/2020/8749083
Al-Jubury HM, Baker SZ, Ahmed ZS. Studying the effectiveness of bio-prepared silver nanoparticles by the Beauveria bassiana fungus in some biological aspects for cowpea weevil (Callosobruchus maculatus (Fab)) in vitro. Euphrates J Agric Sci. 2020; 12(2). ISSN 2072-3875. https://www.iasj.net/iasj/download/eea146801413c5e5
Jones W P, Kinghorn A D. Extraction of plant secondary metabolites, Methods mol. biol.2012; 864: 341–366. https://doi.org/10.1007/978-1-61779-624-1_13
Jaafar NA, Ahmed AS, Al-Sandooq DL. Detection of active compounds in radish Raphanus Sativus L. and their various biological effects. Plant Arch. 2020; 20(2): 1647-50. e-ISSN:2581-6063 (online), ISSN:0972-5210
Chi H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol. 1988; 17(1): 26-34. https://doi.org/10.1093/ee/17.1.26
Chi H, Smith C L. Age-stage, two-sex life table: Theory, data analysis, and application. 2014, https://www.researchgate.net/publication/267522110
Chi HS, Liu HS. Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin. 1985; 24(2): 225-40.
Adesina JM,Mobolade-Adesina TE. Callosobruchus maculates (Fab.) (Coleoptera : Chrysomelidae) infestation and tolerance on stored cowpea seeds protected with Anchomanes difformis (Blume ) EnglExtracts J Hortic Postharvest Res. 2020: 3(2): 367-78. https://doi.org/10.22077/jhpr.2020.3145.1124
Xie J, Luo FX, Shi CY, Jiang WW, Qian YY, Yang MR, et al. Moringa oleifera alkaloids inhibited PC3 cells growth and migration through the COX-2 mediated wnt/β-catenin signaling pathway. Front pharmacol. 2020; 12(11): 523962. https://doi.org/10.3389/fphar.2020.523962
Ali ZA, Habeeb HM, Jazaa LA. Morphological, Anatomical and Chemical study of an exotic plant Jatropha integerrima Jacq. 1763 (Euphoriaceae) in Iraq. Bull Iraq Nat Hist Mus. 2022; 17(1): 129-140. https://doi.org/10.26842/binhm.7.2022.17.1.012
Ekrakene T, Ogunsede I. Evaluation of phytochemicals from lemon and curry leaves as potential protectants against the beans weevil, Callosobruchus maculatus (Fabs)(Coleoptera: Bruchidae). NISEB J. 2017; 15(4): 155-161. http://www.nisebjournal.org
Rosales PF, Bordin GS, Gower AE, Moura S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia. 2020 Jun 1; 143: 104558. https://doi.org/10.1016/j.fitote.2020.104558
Udo IO. Evaluation of the potential of some local spices as stored grain protectants against the maize weevil Sitophilus zeamais Mots (Coleoptera: Curculionidae). J Appl Sci Environ Manag. 2005; 9(1): 165-168.
Udo IO. Potentials of Zanthoxylum xanthoxyloides (LAM.) for the control of stored product insect pests. J Stored Prod Postharvest Res. 2011; 2(3): 40-4. ISSI 2141-656 ISSI 2141-6567
Tefera T, Mugo S, Likhayo P. Effects of insect population density and storage time on grain damage and weight loss in maize due to the maize weevil Sitophilus zeamais and the larger grain borer Prostephanus truncatus. Int J Sci Res. 2011; 2(6): 1-6. https://doi.org/10.5897/AJAR11.179
Mallqui KV, Vieira JL, Guedes RN, Gontijo LM. Azadirachtin-induced hormesis mediating shift in fecundity-longevity trade-off in the Mexican bean weevil (Chrysomelidae: Bruchinae). J Econ Entomol. 2014; 107(2): 860-6. https://doi.org/10.1603/ec13526
Ileke KD, Ogungibite OC, Olayinka-Olugunju JO. Powders and extracts of Syzygium aromaticum and Anacardium occidentale as entomocides against the infestation of Sitophilus oryzae (l.)[Coleoptera: Curculionidae] on stored sorghum grains. Afr Crop Sci. J. 2014; 22(4): 267-73. https://doi.org/2072-6589
Ileke KD, Olotuah OF. Bioactivity of Anacardium occidentale (L) and Allium sativum (L) powders and oils extracts against cowpea bruchid, Callosobruchus maculatus (Fab.)[Coleoptera: Chrysomelidae]. Int J Biol. 2012; 4(1): 96. https://doi.org/10.5539/ijb. v4n1p96
Gomes CD, Sá JM, Godoy MS, Molina-Rugama AJ, Oliveira LL, Pastori PL. Bioactivity of plant extracts from caatinga on cowpea weevil, Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). Rev Bras Eng Agric. 2022; 26: 541-6. http://dx.doi.org/10.1590/1807-1929/agriambi.v26n7p541-546
Win SS, Muhamad R, Ahmad ZA, Adam NA. Life Table and Population Parameters of Nilaparvata lugens Stal. (Homoptera: Delphacidae) on Rice. Trop Life Sci Res. 2011 May; 22(1): 25-35. PMID: 24575207; PMCID: PMC3819089