النشاط التحفيزي المعزز للمركبات النانوية Cu2O / ZnO / GO على تحلل الميثيلين الأزرق

محتوى المقالة الرئيسي

Frikson Jony Purba
Zuriah Sitorus
Kerista Tarigan
Nurdin Siregar

الملخص

في هذا البحث، مادة التحفيز الضوئي للمركبات النانوية مركبة من مخلوط الجسميات النانوية Cu2O، والجسميات النانوية ZnO و أكسيد الغرافين (GO) من خلال منهجي الترسيب المتشارك والهيدروحراري. يهدف هذا البحث إلى معرفة التكوينات المثلى من المركبات النانوية Cu2O/ZnO/GO لانحلال الميثيلين الأزرق. ويقام تركيب المركبات النانوية بخطوتين: (1) تركيب المركبات النانوية Cu2O و ZnO بمنهج الترسيب المتشارك وتحضير GO من خلال منهاج هامر المعدل؛ (2) تحضير مخلوط الجسميات النانوية لمركبات النانوية مع GO من خلال المنهج الهيدروحراري لشكل المركبات النانوية Cu2O/ZnO/GO. ويقام عملية امتزاز التحفيز الضوئي على الميثيلين الأزرق بمساعدة الأشعة فوق البنفسجية من مصياح الهالوجين. تدل نتائج الخصائص على أن التكوينات المثلى هي المركبات النانوية Cu2O/ZnO مع نسبة 1:2.و10% من GO وله مساحة محددة 35.874 م2 ج-1، ونصف قطر مسامي 19.073 نانومتر، وحجم المسام 0.092 سم3 ج-1، وحجم البلورة 31.19 نانومتر. كانت كفاءة تحلل الميثيلين الأزرق تحت ضوء الأشعة فوق البنفسجية لمدة 120 دقيقة 82.0٪ ، 86.0٪ ، 91.4٪ ، و 79.3٪ باستخدام المركبات النانوية Cu2O/ZnO مع GO بنسبة 1٪ ، 3٪ ، 5٪ ، و 10٪ على التوالي. وأيضا، هذه النتائج تدل على أن المركبات النانوية Cu2O/ZnO/GO تعطي الكفاية المرضية في انحلال الميثيلين الأزرق من نفايات صبغ النسيج.

تفاصيل المقالة

كيفية الاقتباس
1.
النشاط التحفيزي المعزز للمركبات النانوية Cu2O / ZnO / GO على تحلل الميثيلين الأزرق. Baghdad Sci.J [انترنت]. 1 يناير، 2024 [وثق 31 يناير، 2025];21(1):0062. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8087
القسم
article

كيفية الاقتباس

1.
النشاط التحفيزي المعزز للمركبات النانوية Cu2O / ZnO / GO على تحلل الميثيلين الأزرق. Baghdad Sci.J [انترنت]. 1 يناير، 2024 [وثق 31 يناير، 2025];21(1):0062. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8087

المراجع

Haseeb M, Haouas I, Nasih M, et al. Asymmetric impact of textile and clothing manufacturing on carbon-dioxide emissions: Evidence from top Asian economies. Energy. 2020; 196: 117094. https://doi.org/10.1016/j.energy.2020.117094

Ismail M, Akhtar K, Khan MI, Kamal Tahseen , Khan A Murad Asiri M Abdullah, et al. Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Curr Pharm. 2019; 25: 3645–3663. https://doi.org/10.2174/1381612825666191021142026

Shindhal T, Rakholiya P, Varjani S, Pandey Ashok, Guo Wenshan Hao Ngo Huu, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 2021; 12: 70–87. https://doi.org/10.1080/21655979.2020.1863034

Nandhini NT, Rajeshkumar S, Mythili S. The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatal Agric Biotechnol. 2019; 19: 101138. https://doi.org/10.1016/j.bcab.2019.101138

Salgot M, Folch M. Wastewater treatment and water reuse. Curr Opin Environ Sci Health. 2018; 2: 64–74. https://doi.org/10.1016/j.coesh.2018.03.005

Ali SS, Sun J, Koutra E, El-Zawawy Nessma , Elsamahy Tamer El-Shetehy Mohamed. Construction of a novel cold-adapted oleaginous yeast consortium valued for textile azo dye wastewater processing and biorefinery. Fuel. 2021; 285: 119050. https://doi.org/10.1016/j.fuel.2020.119050

Sarayu K, Sandhya S. Current Technologies for Biological Treatment of Textile Wastewater–A Review. Appl Biochem Biotechnol. 2012; 167: 645–661. https://doi.org/10.1007/s12010-012-9716-6

Miklos DB, Remy C, Jekel M, Linden Karl G, Drewes Jörg E, Hübner Uwe, et al. Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Res. 2018; 139: 118–131. https://doi.org/10.1016/j.watres.2018.03.042

Laghrib F, Bakasse M, Lahrich S, El Mhammedi Moulay Abderrahim . Advanced oxidation processes: photo-electro-Fenton remediation process for wastewater contaminated by organic azo dyes. Int J Environ Anal Chem. 2021; 101: 2947–2962. https://doi.org/10.1080/03067319.2020.1711892

Singla S, Sharma S, Basu S, Shetti P Nagaraj, Aminabhavi Tejraj M. Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials. Int J Hydrogen Energy. 2021; 46: 33696–33717. https://doi.org/10.1016/j.ijhydene.2021.07.187

Li P, Li D, Liu L, Li Anli, Luo Cuixian, Xiao Yue, et al. Concave structure of Cu2O truncated microcubes: PVP assisted {100} facet etching and improved facet-dependent photocatalytic properties. CrystEngComm. 2018; 20: 6580–6588. https://doi.org/10.1039/C8CE01332B

Kerour A, Boudjadar S, Bourzami R, Allouche B. Eco-friendly synthesis of cuprous oxide (Cu2O) nanoparticles and improvement of their solar photocatalytic activities. J Solid State Chem. 2018; 263: 79–83. https://doi.org/10.1016/j.jssc.2018.04.010

Singh J, Juneja S, Soni RK, Bhattacharya Jaydeep . Sunlight mediated enhanced photocatalytic activity of TiO2 nanoparticles functionalized CuO-Cu2O nanorods for removal of methylene blue and oxytetracycline hydrochloride. J Colloid Interface Sci. 2021; 590: 60–71. https://doi.org/10.1016/j.jcis.2021.01.022

Nie J, Li C, Jin Z, Hu Wen-ting, Wang Jia-hao, , Huang Ting, et al. Fabrication of MCC/Cu2O/GO composite foam with high photocatalytic degradation ability toward methylene blue. Carbohydr Polym. 2019; 223: 115101. https://doi.org/10.1016/j.carbpol.2019.115101

Huo Y, Wang Z, Zhang J, Liang Changhao Dai Kai . Ag SPR-promoted 2D porous g-C3N4/Ag2MoO4 composites for enhanced photocatalytic performance towards methylene blue degradation. Appl Surf Sci. 2018; 459: 271–280. https://doi.org/10.1016/j.apsusc.2018.08.005

Wang P, Qi C, Hao L, Wen Pengchao , Xu Xin . Sepiolite/Cu2O/Cu photocatalyst: Preparation and high performance for degradation of organic dye. J Mater Sci Technol. 2019; 35: 285–291. https://doi.org/10.1016/j.jmst.2018.03.023

Zhang D, Yang J, Wang J, Yang Jianfeng, Qiao Guanjun . Construction of Cu2O-reduced graphene oxide composites with enhanced photoelectric and photocatalytic properties. Opt Mater (Amst). 2020; 100: 109612. https://doi.org/10.1016/j.optmat.2019.109612

Muscetta M, Jitan S al, Palmisano G, Andreozzi Roberto, Marotta Raffaele, Cimino Stefano et al. Visible light – driven photocatalytic hydrogen production using Cu2O/TiO2 composites prepared by facile mechanochemical synthesis. J Environ Chem Eng. 2022; 10: 107735. https://doi.org/10.1016/j.jece.2022.107735

Gao S, Zhang H, Wang X, Deng Ruiping, Sun Dehui, Zheng Guoli. ZnO-Based Hollow Microspheres: Biopolymer-Assisted Assemblies from ZnO Nanorods. J Phys Chem B. 2006; 110: 15847–15852. https://doi.org/10.1021/jp062850s

Fatima R, Kim J-O. Inhibiting photocatalytic electron-hole recombination by coupling MIL-125(Ti) with chemically reduced, nitrogen-containing graphene oxide. Appl Surf Sci. 2021; 541: 148503. https://doi.org/10.1016/j.apsusc.2020.148503

Zhang Y-H, Cai X-L, Guo D-Y, Zhang Hui-Jing Zhou Ning, Fang Shao-Ming, et al. Oxygen vacancies in concave cubes Cu2O-reduced graphene oxide heterojunction with enhanced photocatalytic H2 production. J Mater Sci: Mater Electron. 2019; 30: 7182–7193. https://doi.org/10.1007/s10854-019-01036-2

Zou W, Zhang L, Liu L, Wang Xiaobo, Sun Jingfang, Wu Shiguo et al. Engineering the Cu2O–reduced graphene oxide interface to enhance photocatalytic degradation of organic pollutants under visible light. Appl Catal B. 2016; 181: 495–503. https://doi.org/10.1016/j.apcatb.2015.08.017

Ma J, Wang K, Li L, Zhang Tianli, Kong Yong, Komarneni Sridhar, et al. Visible-light photocatalytic decolorization of Orange II on Cu2O/ZnO nanocomposites. Ceram Int. 2015; 41: 2050–2056. https://doi.org/10.1016/j.ceramint.2014.09.137

Huang H, Zhang J, Jiang L, Zang Zhigang . Preparation of cubic Cu2O nanoparticles wrapped by reduced graphene oxide for the efficient removal of rhodamine B. J Alloys Compd 2017; 718: 112–115. https://doi.org/10.1016/j.jallcom.2017.05.132

Purba FJ, Tarigan K, Sitorus Z, Nurdin Iregar, Ema Frida, Nurdin Bukit, et al. Cu2O/ZnO Nanocomposite and Graphene Oxide with Photocatalysis for Textile Dyes/Dye Reduction. Tianjin Daxue Xuebao. 2022; 55: 388–398. https://doi.org/10.17605/OSF.IO/3JD56

Regmi A, Bhandari J, Bhattarai S, Gautam K Surendra. Synthesis, Characterizations and Antimicrobial Activity of Cuprous Oxide (Cu2O) Nanoparticles. J Nepal Chem Soc. 2019; 40: 5–10. https://doi.org/10.3126/jncs.v40i0.27271

Hjiri M, Mir L, Leonardi S. Synthesis, Characterization and Sensing Properties of AZO and IZO Nanomaterials. Chemosensors. 2014; 2: 121–130. https://doi.org/10.3390/chemosensors2020121

Yoo MJ, Park HB. Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon. 2019; 141: 515–522. https://doi.org/10.1016/j.carbon.2018.10.009

Scherrer P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse 1918; 98–100.

Zhang W, Xu H, Xie F, Ma Xiaohua, Niu Bo, Mingqi Chen et al. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat Commun. 2022; 13: 471. https://doi.org/10.1038/s41467-022-28180-4

Islam MR, Rahman M, Farhad SFU, Podder J. Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surf Interfaces. 2019; 16: 120–126. https://doi.org/10.1016/j.surfin.2019.05.007

Rosas-Laverde NM, Pruna A, Busquets-Mataix D, Marí B, Cembrero J, Vicente F Salas, et al. Improving the properties of Cu2O/ZnO heterojunction for photovoltaic application by graphene oxide. Ceram Int. 2018; 44: 23045–23051. https://doi.org/10.1016/j.ceramint.2018.09.107

Tantubay K, Das P, Baskey Sen M. Ternary reduced graphene oxide–CuO/ZnO nanocomposite as a recyclable catalyst with enhanced reducing capability. J Environ Chem Eng. 2020; 8: 103818. https://doi.org/10.1016/j.jece.2020.103818

Phoohinkong W, Foophow T, Pecharapa W. Synthesis and characterization of copper zinc oxide nanoparticles obtained via metathesis process. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2017; 8: 035003. https://doi.org/10.1088/2043-6254/aa7223

Al-Senani GM, Al-Saeedi SI, Al-Kadhi NS, Abd-Elkader Omar H Deraz Nasrallah M. Green Synthesis and Pinning Behavior of Fe-Doped CuO/Cu2O/Cu4O3 Nanocomposites. Processes. 2022; 10: 729. https://doi.org/10.3390/pr10040729

Ma Z, Hu L, Li X, Deng Lingjuan, Fan Guang He Yangqing. A novel nano-sized MoS2 decorated Bi2O3 heterojunction with enhanced photocatalytic performance for methylene blue and tetracycline degradation. Ceram Int. 2019; 45: 15824–15833. https://doi.org/10.1016/j.ceramint.2019.05.085