تصميم , تحضير , توصيف مجموعه جديدة من مشتقات ٣،٢- ثنائي هيدروكوينزولين -4 (1H) (DHQZ-1) وتقييم الفعالية المضادة للورم باستخدام الالتحام الجزيئي حاسوبيا
محتوى المقالة الرئيسي
الملخص
الهدف من هذا البحث هو استخدام التفاعلات متعددة المكونات لإنتاج سلسلة جديدة من مشتقات الكوينزولين والتي تعطي منتوج كثير.يحدث هذا التفاعل من خلال تكثيف بيريدين-3- كاربالديهايد مع-1,3-H1 بنزاوكزازين-2و4-ثنائي ون )أيساتويك انهيدرايد) والأمينات الأولية (7-3). وتمت اذابه المكونات باستخدام مذيب رباعي هيدروالفوران (THF ، مذيب غير بروتوني) (البروتوني). مع كبريتات الصوديوم الهيدروجينيه (NaHSO4) على شكل عامل مساعد في التفاعل وذلك لتوفيرمنتوج عالي من مشتقات 2،3- ثنائي هيدروكوينزولين -4 (1H). تم الحصول على أفضل ناتج عند درجه حراره 68 درجة مئوية. بشكل عام ، تُظهر جميع المنتجات المتسلسلة (8-12) قدرة كبيرة كمضاد فعال لسرطان الثدي باستخدام دراسة الالتحام الجزيئي للمشتقات حيث اعطى المركب 11 ، اكثر فعالية مضادة من المركبات المحضرة الاخرى. تم تقييم دراسة الالتحام الجزيئي للمشتقات باستخدام برنامج تصميم الأدوية Auto Dock 4.2 . (PDB)) ، كود البروتين M171).
Received 12/01/2023
Revised 22/05/2023
Accepted 24/05/2023
Published Online First 25/12/2023
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Imtiaz K, Aliya I, Waqas A, Aamer S. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur J Med Chem. 2015; 90: 124–169. https://doi.org/10.1016/j.ejmech.2014.10.084
Badolato M, Aiello F, Neamati N. 2,3-Dihydroquinazolin-4(1H)-one as a privileged scaffold in drug design. RSC Adv. 2018 Jun; 8: 20894-20921. https://doi.org/10.1039/C8RA02827C
Fadel Z H, AL-Azzawi A M. Designing and Synthesising Novel Benzophenone BiscyclicImides Comprising Drug Moity with Investigating their Antimicrobial Activity. Baghdad Sci J. 2022; 19(5): 1027-1035. https://doi.org/10.21123/bsj.2022.6226
Nief O F, Abdullah E K, Alzahawy H M G, Jasim M N. Synthesis, Characterization of Poly Heterocyclic Compounds, and Effect on Cancer Cell (Hep-2) In vitro. Baghdad Sci J. 2018; 15(4): 415-424. https://doi.org/10.21123/bsj.2018.15.4.0415
Hu Y, Ehli E A, Hudziak J J, Davies G. Berberine and evodiamine influence serotonin transporter(5-HTT) expression via the 5-HTT-linked polymorphic region. Pharmacogenomics J. 2012; 12: 372–378. https://doi.org/10.1038/tpj.2011.24
Mahdya H A, Ibrahim M K, Metwaly A M, Belal A, Mehany A B M, El-Gamal K M A, et al. Design, synthesis, molecular modeling, in vivo studies and anticancer evaluation of quinazolin-4(3H)-one derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. Eur J Med Chem. 2020; 94: 103422. https://doi.org/10.1016/j.bioorg.2019.103422
Yang Y, Renzhong F, Yang L, Jing C, Xiaojun Z. Microwave-promoted one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by heteropolyanion-based ionic liquids under solvent-free conditions. Tetrahedron 2020; 76 (27): 131312. https://doi.org/10.1016/j.tet.2020.131312
Williams R, Niswender CM, Luo Q, Le U, Conn PJ, Lindsley CW. Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4). Part II: challenges in hit-to-lead. Bioorg. Med Chem Lett. 2009; 19: 962–966. https://doi.org/10.1016/j.bmcl.2008.11.104
Dahabiyeh L A, Hourani W. Molecular and metabolic alterations of 2,3-dihydroquinazolin-4(1H)-one derivatives in prostate cancer cell lines. Sci Rep. 2022; 12(1): 21599. https://doi.org/10.1038/s41598-022-26148-4
Kalpana K, Anitha R V, Ravi K B. One-Pot Pseudo-Five-Component Synthesis of 2,3-Dihydroquinazolin-4(1H)-one Derivatives via [DBU][OAc] as Ionic Liquid, and Their Anti-Cancer Evaluation and Molecular Modelling. Russ J Gen Chem. 2022; 92: 1070-1075. https://doi.org/10.1134/S1070363222060196
Vemula S R, Kumar D, Cook G R. Bismuth-Catalyzed Synthesis of 2-Substituted Quinazolinones. Tetrahedron Lett. 2018; 59(42): 3801-3805. https://doi.org/10.1016/j.tetlet.2018.09.014
Chinigo P G M, Grindrod M, Hamel S, Dakshanamurthy E, Chruszcz S, Minor M, et al. Asymmetric Synthesis of 2,3-Dihydro-2-arylquinazolin-4-ones: Methodology and Application to a Potent Fluorescent Tubulin Inhibitor with Anticancer Activity. ACS Publications. 2008; 51: 4620–4631. https://doi.org/10.1021/jm800271c
Shaabani A, Rahmati A, Moghimirad A. Green chemistry approaches for the synthesis of quinoxaline derivatives: Comparison of ethanol and water in the presence of the reusable catalyst cellulose sulfuric acid. C R Chim. 2008; 12 (12): 1249-1252. https://doi.org/10.1016/j.crci.2009.01.006
Lin-Su W, Guo-Xue H, Xiang-Fei K, Cheng-Xue P, Dong-Liang M, Gui-Fa S. Gold(III)-Catalyzed Selective Cyclization of Alkynyl Quinazolinone-Tethered Pyrroles: Synthesis of Fused. Quinazolinone Scaffolds. J Org Chem. 2018; 83(12): 6719-6727. https://doi.org/10.1021/acs.joc.8b00168
Dabiri M, Salehi P, Baghbanzadeh M. Ionic liquid promoted eco-friendly and efficient synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones. Int J Chem. 2007; 138: 1191-1194. https://doi.org/10.1007/s00706-007-0635-0
Murthy V N, Nikumbh S P, Tadiparthi K, Madhubabu M V, Jammula S R, Rao L V, et al. Amberlite-15 promoted an unprecedented aza Michael rearrangement for one pot synthesis of dihydroquinazolinone compounds. RSC Adv. 2018; 8: 22331-22334. https://doi.org/10.1039/C8RA03308K
Vemula S R, Kumar D, Cook G R. Bismuth-Catalyzed Synthesis of 2-Substituted Quinazolinones. Tetrahedron Lett. 2018; 59(42): 3801-3805. https://doi:10.1016/j.tetlet.2018.09.014
Gauravi Y, Valmik P J, Rajpratap K, Satyajit S. Solvent-Free, Mechanochemically Scalable Synthesis of 2,3-Dihydroquinazolin-4(1H)-one Using Brønsted Acid Catalyst. ACS Sustain Chem Eng. 2019; 7(15): 13551–13558. https://doi.org/10.1021/acssuschemeng.9b03199
Motamedi R, Rezanejade- Bardajee G, Makenali-Rad S. Cu(II)-Schiff base/SBA-15 as an efficient catalyst for synthesis of benzopyrano[3,2-c]chromene-6,8-dione derivatives. Asian J Green Chem. 2017; 1: 89-97. https://doi.org/10.22034/ajgc.2018.65504
Banitaba S H. Design. Preparation and characterization of a novel BiFeO3/CuWO4 heterojunction catalyst for one-pot synthesis of trisubstituted imidazoles. Iran Chem Commun. 2018; 6: 389-401.
Zahra Hoseini Z, Abolghasem Davoodnia A, Khojastehnezhad A, Pordel M. Phosphotungstic acid supported on functionalized graphene oxide nanosheets (GO-SiC3-NH3-H2PW): Preparation, characterization, and first catalytic application in the synthesis of amidoalkyl naphthols. Eurasian Chem Commun. 2020; 1: 398-409. https://10.33945/SAMI/ECC.2020.3.10
Vafajoo Z, Kordestani D, Vafajoo S. Facile and convenient synthesis of 2-amino-5,10-dioxo-4-aryl-5,10-dihydro-4H-benzo[g]chromene-3-carbonitrile derivatives by electrocatalytically chemical transformation. Iranian Chem Commun. 2018; 6: 293-299.
Afsharnezhad M, Bayat M, Hosseini FS. Efficient synthesis of new functionalized 2-(alkylamino)-3-nitro-4-(aryl)-4H-benzo[g]chromene-5,10-dione. Iranian Chem Commun. 2019; 6: 293-299. https://doi.org/10.1007/s11030-019-09959-y
Del Corte X, De Marigorta E M, Palacios F, Vicario J. A Brønsted acid-catalyzed multicomponent reaction for the synthesis of highly functionalized γ-lactam derivatives. Molecules. 2019; 24 (16): 2951. https://doi.org/10.3390/molecules24162951
Ramos L M, Rodrigues M O, Neto B A D. Mechanistic knowledge and noncovalent interactions as the key features for enantioselective catalysed multicomponent reactions: a critical review. Org Biomol Chem. 2019; 17: 7260. https://doi.org/10.1039/C9OB01088B
Wiemann J, Fischer L, Kessler J, Strohl D, Csuk Ugi R. Multicomponent-reaction: syntheses of cytotoxic dehydroabietylamine derivatives. Bioorg Chem. 2018; 81: 567. https://doi.org/10.1016/j.bioorg.2018.09.014
Alvim HG, Correa JR, Assumpção JA, da Silva WA, Rodrigues MO, de Macedo JL, et al. Heteropolyacid-containing ionic liquid-catalyzed multicomponent synthesis of bridgehead nitrogen heterocycles: mechanisms and mitochondrial staining. J Org Chem. 2018; 16;83(7):4044-53.
Konstantinidou M, Kurpiewska K, Kalinowska-Tluscik J, Domling A. Glutarimide alkaloids through multicomponent reaction chemistry. European J Org Chem. 2018; 18: 6714-6719. https://doi.org/10.1002/ejoc.201801276
Yu S, Hua R, Fu X, Liu G, Zhang D, Jia S, et al. Asymmetric multicomponent reactions for efficient construction of homopropargyl amine carboxylic esters. Org Lett. 2019; 21: 5737-5741. https://doi.org/10.1021/acs.orglett.9b02139
Sayed A R, Gomha S M, Taher E A, Muhammad Z A, El_Seedi H R, Gaber H M, et al. One-pot synthesis of novel thiazoles as potential anti-cancer agents Drug. Drug Des Devel. Ther. 2020; 14: 1363-1375. https://doi.org/10.2147/DDDT.S221263
Rashdan H, Gomha S M, El-Gendey M S, El-Hashash M A, Soliman A M M. Eco-friendly one-pot synthesis of some new pyrazolo[1,2-b]phthalazinediones with antiproliferative efficacy on human hepatic cancer cell lines. Green Chem Lett Rev. 2018; 11: 264. https://doi.org/10.1080/17518253.2018.1474270
Gomha S M, Muhammad Z, Abdel-aziz M R, Abdel Aziz H M, Gaber H, Elaasser M M. One-pot synthesis of new thiadiazolyl-pyridines as anticancer and antioxidant agents. J Heterocycl Chem. 2018; 55(2): 530-536. https://doi.org/10.1002/jhet.3088
Cioc R C, Ruijter E, Orru R V A. Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis. Green Chem. 2014; 16(6): 2958–2975. https://doi.org/10.1039/C4GC00013G
Bodaghifard A M, Safari S. Cu(II) complex-decorated hybrid nanomaterial: a retrievable catalyst for green synthesis of 2,3-dihydroquinazolin-4(1H)-ones. J Coord Chem. 2021; 74(9-10): 1613-1627. https://doi.org/10.1080/00958972.2021.1905803
Charya A, Chacko R, Bose S, Lapenna P, Pattanayak A S P. Structure based multi targeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci Rep. 2019; 9(1): 1-13. https://doi.org/10.1038/s41598-019-52162-0