تصميم , تحضير , توصيف مجموعه جديدة من مشتقات ٣،٢- ثنائي هيدروكوينزولين -4 (1H) (DHQZ-1) وتقييم الفعالية المضادة للورم باستخدام الالتحام الجزيئي حاسوبيا

محتوى المقالة الرئيسي

Mohammed Abed Kadhim
https://orcid.org/0000-0001-9096-7642
Emad Khelil Mohammed Zangana
https://orcid.org/0000-0002-7829-0437
Arkan Hassan Jawad
https://orcid.org/0000-0003-4372-1513

الملخص

الهدف من هذا البحث هو استخدام التفاعلات متعددة المكونات لإنتاج سلسلة جديدة من مشتقات  الكوينزولين والتي تعطي منتوج كثير.يحدث هذا التفاعل من خلال تكثيف بيريدين-3- كاربالديهايد  مع-1,3-H1 بنزاوكزازين-2و4-ثنائي ون )أيساتويك انهيدرايد) والأمينات الأولية (7-3). وتمت اذابه المكونات باستخدام مذيب رباعي هيدروالفوران (THF ، مذيب غير بروتوني) (البروتوني). مع كبريتات الصوديوم الهيدروجينيه (NaHSO4) على شكل عامل مساعد في التفاعل وذلك لتوفيرمنتوج عالي من مشتقات 2،3- ثنائي هيدروكوينزولين -4 (1H). تم الحصول على أفضل ناتج عند درجه حراره 68 درجة مئوية. بشكل عام ، تُظهر جميع المنتجات المتسلسلة (8-12) قدرة كبيرة كمضاد فعال لسرطان الثدي باستخدام دراسة الالتحام الجزيئي للمشتقات حيث اعطى المركب 11 ، اكثر فعالية مضادة من المركبات المحضرة الاخرى. تم تقييم دراسة الالتحام الجزيئي للمشتقات باستخدام برنامج تصميم الأدوية Auto Dock 4.2  . (PDB)) ، كود البروتين M171).

تفاصيل المقالة

كيفية الاقتباس
1.
تصميم , تحضير , توصيف مجموعه جديدة من مشتقات ٣،٢- ثنائي هيدروكوينزولين -4 (1H) (DHQZ-1) وتقييم الفعالية المضادة للورم باستخدام الالتحام الجزيئي حاسوبيا. Baghdad Sci.J [انترنت]. 1 يوليو، 2024 [وثق 24 يناير، 2025];21(7):2263. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8232
القسم
article

كيفية الاقتباس

1.
تصميم , تحضير , توصيف مجموعه جديدة من مشتقات ٣،٢- ثنائي هيدروكوينزولين -4 (1H) (DHQZ-1) وتقييم الفعالية المضادة للورم باستخدام الالتحام الجزيئي حاسوبيا. Baghdad Sci.J [انترنت]. 1 يوليو، 2024 [وثق 24 يناير، 2025];21(7):2263. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8232

المراجع

Imtiaz K, Aliya I, Waqas A, Aamer S. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur J Med Chem. 2015; 90: 124–169. https://doi.org/10.1016/j.ejmech.2014.10.084

Badolato M, Aiello F, Neamati N. 2,3-Dihydroquinazolin-4(1H)-one as a privileged scaffold in drug design. RSC Adv. 2018 Jun; 8: 20894-20921. https://doi.org/10.1039/C8RA02827C

Fadel Z H, AL-Azzawi A M. Designing and Synthesising Novel Benzophenone BiscyclicImides Comprising Drug Moity with Investigating their Antimicrobial Activity. Baghdad Sci J. 2022; 19(5): 1027-1035. https://doi.org/10.21123/bsj.2022.6226

Nief O F, Abdullah E K, Alzahawy H M G, Jasim M N. Synthesis, Characterization of Poly Heterocyclic Compounds, and Effect on Cancer Cell (Hep-2) In vitro. Baghdad Sci J. 2018; 15(4): 415-424. https://doi.org/10.21123/bsj.2018.15.4.0415

Hu Y, Ehli E A, Hudziak J J, Davies G. Berberine and evodiamine influence serotonin transporter(5-HTT) expression via the 5-HTT-linked polymorphic region. Pharmacogenomics J. 2012; 12: 372–378. https://doi.org/10.1038/tpj.2011.24

Mahdya H A, Ibrahim M K, Metwaly A M, Belal A, Mehany A B M, El-Gamal K M A, et al. Design, synthesis, molecular modeling, in vivo studies and anticancer evaluation of quinazolin-4(3H)-one derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. Eur J Med Chem. 2020; 94: 103422. https://doi.org/10.1016/j.bioorg.2019.103422

Yang Y, Renzhong F, Yang L, Jing C, Xiaojun Z. Microwave-promoted one-pot three-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones catalyzed by heteropolyanion-based ionic liquids under solvent-free conditions. Tetrahedron 2020; 76 (27): 131312. https://doi.org/10.1016/j.tet.2020.131312

Williams R, Niswender CM, Luo Q, Le U, Conn PJ, Lindsley CW. Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4). Part II: challenges in hit-to-lead. Bioorg. Med Chem Lett. 2009; 19: 962–966. https://doi.org/10.1016/j.bmcl.2008.11.104

Dahabiyeh L A, Hourani W. Molecular and metabolic alterations of 2,3-dihydroquinazolin-4(1H)-one derivatives in prostate cancer cell lines. Sci Rep. 2022; 12(1): 21599. https://doi.org/10.1038/s41598-022-26148-4

Kalpana K, Anitha R V, Ravi K B. One-Pot Pseudo-Five-Component Synthesis of 2,3-Dihydroquinazolin-4(1H)-one Derivatives via [DBU][OAc] as Ionic Liquid, and Their Anti-Cancer Evaluation and Molecular Modelling. Russ J Gen Chem. 2022; 92: 1070-1075. https://doi.org/10.1134/S1070363222060196

Vemula S R, Kumar D, Cook G R. Bismuth-Catalyzed Synthesis of 2-Substituted Quinazolinones. Tetrahedron Lett. 2018; 59(42): 3801-3805. https://doi.org/10.1016/j.tetlet.2018.09.014

Chinigo P G M, Grindrod M, Hamel S, Dakshanamurthy E, Chruszcz S, Minor M, et al. Asymmetric Synthesis of 2,3-Dihydro-2-arylquinazolin-4-ones: Methodology and Application to a Potent Fluorescent Tubulin Inhibitor with Anticancer Activity. ACS Publications. 2008; 51: 4620–4631. https://doi.org/10.1021/jm800271c

Shaabani A, Rahmati A, Moghimirad A. Green chemistry approaches for the synthesis of quinoxaline derivatives: Comparison of ethanol and water in the presence of the reusable catalyst cellulose sulfuric acid. C R Chim. 2008; 12 (12): 1249-1252. https://doi.org/10.1016/j.crci.2009.01.006

Lin-Su W, Guo-Xue H, Xiang-Fei K, Cheng-Xue P, Dong-Liang M, Gui-Fa S. Gold(III)-Catalyzed Selective Cyclization of Alkynyl Quinazolinone-Tethered Pyrroles: Synthesis of Fused. Quinazolinone Scaffolds. J Org Chem. 2018; 83(12): 6719-6727. https://doi.org/10.1021/acs.joc.8b00168

Dabiri M, Salehi P, Baghbanzadeh M. Ionic liquid promoted eco-friendly and efficient synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones. Int J Chem. 2007; 138: 1191-1194. https://doi.org/10.1007/s00706-007-0635-0

Murthy V N, Nikumbh S P, Tadiparthi K, Madhubabu M V, Jammula S R, Rao L V, et al. Amberlite-15 promoted an unprecedented aza Michael rearrangement for one pot synthesis of dihydroquinazolinone compounds. RSC Adv. 2018; 8: 22331-22334. https://doi.org/10.1039/C8RA03308K

Vemula S R, Kumar D, Cook G R. Bismuth-Catalyzed Synthesis of 2-Substituted Quinazolinones. Tetrahedron Lett. 2018; 59(42): 3801-3805. https://doi:10.1016/j.tetlet.2018.09.014

Gauravi Y, Valmik P J, Rajpratap K, Satyajit S. Solvent-Free, Mechanochemically Scalable Synthesis of 2,3-Dihydroquinazolin-4(1H)-one Using Brønsted Acid Catalyst. ACS Sustain Chem Eng. 2019; 7(15): 13551–13558. https://doi.org/10.1021/acssuschemeng.9b03199

Motamedi R, Rezanejade- Bardajee G, Makenali-Rad S. Cu(II)-Schiff base/SBA-15 as an efficient catalyst for synthesis of benzopyrano[3,2-c]chromene-6,8-dione derivatives. Asian J Green Chem. 2017; 1: 89-97. https://doi.org/10.22034/ajgc.2018.65504

Banitaba S H. Design. Preparation and characterization of a novel BiFeO3/CuWO4 heterojunction catalyst for one-pot synthesis of trisubstituted imidazoles. Iran Chem Commun. 2018; 6: 389-401.

Zahra Hoseini Z, Abolghasem Davoodnia A, Khojastehnezhad A, Pordel M. Phosphotungstic acid supported on functionalized graphene oxide nanosheets (GO-SiC3-NH3-H2PW): Preparation, characterization, and first catalytic application in the synthesis of amidoalkyl naphthols. Eurasian Chem Commun. 2020; 1: 398-409. https://10.33945/SAMI/ECC.2020.3.10

Vafajoo Z, Kordestani D, Vafajoo S. Facile and convenient synthesis of 2-amino-5,10-dioxo-4-aryl-5,10-dihydro-4H-benzo[g]chromene-3-carbonitrile derivatives by electrocatalytically chemical transformation. Iranian Chem Commun. 2018; 6: 293-299.

Afsharnezhad M, Bayat M, Hosseini FS. Efficient synthesis of new functionalized 2-(alkylamino)-3-nitro-4-(aryl)-4H-benzo[g]chromene-5,10-dione. Iranian Chem Commun. 2019; 6: 293-299. https://doi.org/10.1007/s11030-019-09959-y

Del Corte X, De Marigorta E M, Palacios F, Vicario J. A Brønsted acid-catalyzed multicomponent reaction for the synthesis of highly functionalized γ-lactam derivatives. Molecules. 2019; 24 (16): 2951. https://doi.org/10.3390/molecules24162951

Ramos L M, Rodrigues M O, Neto B A D. Mechanistic knowledge and noncovalent interactions as the key features for enantioselective catalysed multicomponent reactions: a critical review. Org Biomol Chem. 2019; 17: 7260. https://doi.org/10.1039/C9OB01088B

Wiemann J, Fischer L, Kessler J, Strohl D, Csuk Ugi R. Multicomponent-reaction: syntheses of cytotoxic dehydroabietylamine derivatives. Bioorg Chem. 2018; 81: 567. https://doi.org/10.1016/j.bioorg.2018.09.014

Alvim HG, Correa JR, Assumpção JA, da Silva WA, Rodrigues MO, de Macedo JL, et al. Heteropolyacid-containing ionic liquid-catalyzed multicomponent synthesis of bridgehead nitrogen heterocycles: mechanisms and mitochondrial staining. J Org Chem. 2018; 16;83(7):4044-53.

Konstantinidou M, Kurpiewska K, Kalinowska-Tluscik J, Domling A. Glutarimide alkaloids through multicomponent reaction chemistry. European J Org Chem. 2018; 18: 6714-6719. https://doi.org/10.1002/ejoc.201801276

Yu S, Hua R, Fu X, Liu G, Zhang D, Jia S, et al. Asymmetric multicomponent reactions for efficient construction of homopropargyl amine carboxylic esters. Org Lett. 2019; 21: 5737-5741. https://doi.org/10.1021/acs.orglett.9b02139

Sayed A R, Gomha S M, Taher E A, Muhammad Z A, El_Seedi H R, Gaber H M, et al. One-pot synthesis of novel thiazoles as potential anti-cancer agents Drug. Drug Des Devel. Ther. 2020; 14: 1363-1375. https://doi.org/10.2147/DDDT.S221263

Rashdan H, Gomha S M, El-Gendey M S, El-Hashash M A, Soliman A M M. Eco-friendly one-pot synthesis of some new pyrazolo[1,2-b]phthalazinediones with antiproliferative efficacy on human hepatic cancer cell lines. Green Chem Lett Rev. 2018; 11: 264. https://doi.org/10.1080/17518253.2018.1474270

Gomha S M, Muhammad Z, Abdel-aziz M R, Abdel Aziz H M, Gaber H, Elaasser M M. One-pot synthesis of new thiadiazolyl-pyridines as anticancer and antioxidant agents. J Heterocycl Chem. 2018; 55(2): 530-536. https://doi.org/10.1002/jhet.3088

Cioc R C, Ruijter E, Orru R V A. Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis. Green Chem. 2014; 16(6): 2958–2975. https://doi.org/10.1039/C4GC00013G

Bodaghifard A M, Safari S. Cu(II) complex-decorated hybrid nanomaterial: a retrievable catalyst for green synthesis of 2,3-dihydroquinazolin-4(1H)-ones. J Coord Chem. 2021; 74(9-10): 1613-1627. https://doi.org/10.1080/00958972.2021.1905803

Charya A, Chacko R, Bose S, Lapenna P, Pattanayak A S P. Structure based multi targeted molecular docking analysis of selected furanocoumarins against breast cancer. Sci Rep. 2019; 9(1): 1-13. https://doi.org/10.1038/s41598-019-52162-0