التخليق الأخضر للمتراكب النانوي: بناءً على [الأوجينول وأكاسيد المعادن], التشخيص والتطبيقات الطبية الحيوية
محتوى المقالة الرئيسي
الملخص
تم تفاعل الأوجينول (EUG) كمادة أساس مع خليط من أكاسيد المعادن (ZnO و CuO) التي تم تحضيرها من خلات المعدن، Zn (CH3CO2)2 و Cu (CH3CO2)2 كمواد أولية واستخدام الكلايكول إيثيلين (EG) كمذيب لتخليق المتراكب النانوي [Eug/ ZnO: CuO] باستخدام طريقة .Sol-Gel تم تشخيص المتراكب النانوي المحضر باستخدام التقنيات (FT-IR, AFM, SEM, EDX, و(XRD, حيث وجد أن متوسط قطر الجسيم يقع ضمن نطاق المقياس النانوي. ولوحظ أيضاً أن المادة النانوية المحضرة كانت على شكل قضبان ذات توزيع متجانس جيد. من أجل الوقوف على الخواص النانوية التي تم الحصول عليها، تم توظيف تلك الخواص من حيث البعد النانوي وخصائص الشكل، لدراسة فعالية المتراكب النانوي المحضر [Eug/ ZnO: CuO] كنشاط مضاد للميكروبات (مضاد للبكتيريا ومضاد للفطريات) ضد نوعين من البكتيريا [Escherichia Coli (-) (E. coli), and Staphylococcus aureus (+) (S. aureus)], ونوع واحد من الفطريات [Candida albicaus (C. albicaus)], حيث أظهرت نتائج مقبولة. كما تم قياس فعالية المتراكب النانوي المحضر كمضاد للأكسدة ضد الجذور الحرة وأظهر نسبة كسح جيدة. بالإضافة إلى ذلك تمت دراسة التأثير السمي الخلوي للمتراكب النانوي [Eug/ ZnO: CuO] على خلايا سرطان الثدي (MCF-7)، وأظهر نتائج مقبولة في قتل الخط الخلوي (MCF-7) بتراكيز عالية.
Received 04/01/2023
Revised 28/07/2023
Accepted 30/07/2023
Published Online First 20/02/2024
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Nisar MF, Khadim M, Rafiq M, Chen J, Yang Y, Wan CC. Pharmacological properties and health benefits of eugenol: a comprehensive review. Oxid Med Cell Longev. 2021; 2021(2): 1-14. https://doi.org/10.1155/2021/2497354.
Abdou A, Elmakssoudi A, El Amrani A, JamalEddine J, Dakir M. Recent advances in chemical reactivity and biological activities of eugenol derivatives. Med Chem Res. 2021: 1011-30. http://doi.org/10.1007/s00044-021-02712-x.
Aburel OM, Pavel IZ, Dănilă MD, Lelcu T, Roi A, Lighezan R, et al. Pleiotropic Effects of Eugenol: The Good, the Bad, and the Unknown. Oxid Med Cell Longev. 2021; 2021(2):1-15. https://doi.org/10.1155/2021/3165159.
Ginting M, Surbakti D, Triana N. Synthesis of 2-(4-Allyl-2-Methoxy Phenoxy)-N, N-Bis (2-Hydroxyethyl) Acetamide from the transformation of eugenol isolated from clove oil. J Chem Nat Resour. 2019; 1(01): 31-9. https://doi.org /10.32734/jcnar.v1i1.832
Ulanowska M, Olas B. Biological Properties and prospects for the application of eugenol—A review. Int J Mol Sci. 2021; 22(7): 3671. https://doi.org/10.3390/ijms22073671.
Sethuram L, Thomas J, Mukherjee A, Chandrasekaran N. Eugenol micro-emulsion reinforced with silver nanocomposite electrospun mats for wound dressing strategies. Mater Adv. 2021; 2(9): 2971-88. https://doi.org/10.1039/D1MA00103E.
Thanh Chi NT, Da TT, Ha NV, Dinh NH. Synthesis and spectral characterization of platinum (II) complexes containing eugenol, a natural allylphenol. J Coord Chem. 2017; 70(6): 1008-19. https://doi.org/10.1080/00958972.2017.1281917
Zari AT, Zari TA, Hakeem KR. Anticancer Properties of Eugenol: A Review. Molecules. 2021; 26(23): 7407. https://doi.org/10.3390/molecules26237407
Khalaf RL, Ahmed EM, Mathkor TH, AL-Zubaidi HY. Synthesis of Silver Nanoparticles Using L. Rosa Flowers Extracts: Thermodynamic and Kinetic Studies on the Inhibitoty Effects of Nanoparticles on Creatine Kinase Activity. Iraqi J Sci. 2021; 62(8): 2486-500. https://doi.org/10.24996/ijs.2021.62.8.1
Farhan RZ, Ebrahim SE. Preparing nanosilica particles from rice husk using precipitation method. Baghdad Sci J. 2021; 18: 494-500. http://dx.doi.org/10.21123/bsj.2021.18.3.0494
Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2021; 199: 344-70. https://doi.org/10.1007/s12011-020-02138-3
Omanović-Mikličanin E, Badnjević A, Kazlagić A, Hajlovac M. Nanocomposites: A brief review. Health Technol. 2020; 10(1): 51-9. https://doi.org/10.1007/s12553-019-00380-x
Ates B, Koytepe S, Ulu A, Gurses C, Thakur VK. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem Rev. 2020; 120(17): 9304-62. https://doi.org/10.1021/acs.chemrev.9b00553
Huynh KH, Pham XH, Kim J, Lee SH, Chang H, Rho WY, et al. Synthesis, properties, and biological applications of metallic alloy nanoparticles. Int J Mol Sci. 2020; 21(14): 5174. https://doi.org/10.3390/ijms21145174
Wong J, Zou T, Lee AH, Zhang C. The potential translational applications of nanoparticles in endodontics.
Int J Nanomedicine. 2021; 16: 2087-106. https://doi.org/10.2147/IJN.S293518
Amar IA, Faraj S, Abdulqadir M, Abdalsamed I, Altohami F, Samba M. Oil spill removal from water surfaces using zinc ferrite magnetic nanoparticles as a sorbent material. Iraqi J Sci. 2021: 62(3): 718-28. https://doi.org/10.24996/ijs.2021.62.3.2
Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, Valiev GH, Kianfar E. Nanomaterial by sol-gel method: synthesis and application. Adv Mater Sci Eng. 2021; 2021: 1-21. https://doi.org/10.1155/2021/5102014
Abdulsalam KS, Thair L, Hameed R, Saiyah MA. Synthesis of Fibrous Hydroxyapatite through Sol-Gel Route. Baghdad Sci J. 2009; 6(2): 1-7. https://doi.org/10.21123/bsj.2009.6.2.379-385
Shamhari NM, Wee BS, Chin SF, Kok KY. Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chimica Slovenica. 2018; 65(3):5 78-85. http://dx.doi.org/10.17344/acsi.2018.4213
Dhoot G, Auras R, Rubino M, Dolan K, Soto-Valdez H. Determination of eugenol diffusion through LLDPE using FTIR-ATR flow cell and HPLC techniques. Polymer. 2009; 50(6): 1470-82. https://doi.org/10.1016/j.polymer.2009.01.026
Mahapatra SK, Roy S. Phytopharmacological approach of free radical scavenging and anti-oxidative potential of eugenol and Ocimum gratissimum Linn. Asian Pac J Trop Biomed. 2014; 7: S391-7. https://doi.org/10.1016/S1995-7645(14)60264-9
Matykiewicz D, Skórczewska K. Characteristics and Application of Eugenol in the Production of Epoxy and Thermosetting Resin Composites: A Review. Materials. 2022; 15(14): 4824. https://doi.org/10.3390/ma15144824
Patel M, Mishra S, Verma R, Shikha D. Synthesis of ZnO and CuO nanoparticles via Sol gel method and Its Characterization by using XRD and FT-IR Analysis. Res Sq. 2022; 1-13. https://doi.org/10.21203/rs.3.rs-1234162/v1
Asad M, Shah A, Iftikhar FJ, Nimal R, Nisar J, Zia MA. Development of a Binder-Free Tetra-Metallic Oxide Electrocatalyst for Efficient Oxygen Evolution Reaction. Sustain Chem. 2022; 3(3): 286-99. https://doi.org/10.3390/suschem3030018
Rashid TM, Nayef UM, Jabir MS, Mutlak FA. Synthesis and characterization of Au: ZnO (core: shell) nanoparticles via laser ablation. Optik. 2021; 244: 167569. https://doi.org/10.1016/j.ijleo.2021.167569
Abbey TC, Deak E. What's new from the CLSI subcommittee on antimicrobial susceptibility testing M100. Clin Microbiol Newsl 2019; 41 (23): 203-209. https://doi.org/10.1016/j.clinmicnews.2019.11.002
Mak KK, Kamal M, Ayuba S, Sakirolla R, Kang YB, Mohandas K, et al. A comprehensive review on eugenol's antimicrobial properties and industry applications: A transformation from ethnomedicine to industry. Pharmacogn Rev. 2019; 13(25): 1-9. https://doi.org/10.4103/phrev.phrev_46_18
Koul B, Poonia AK, Yadav D, Jin JO. Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects. Biomolecules. 2021; 11(6): 886. https://doi.org/10.3390/biom11060886
Maged AS, Ahamed LS. Synthesis of new heterocyclic derivatives from 2-furyl methanethiol and study their applications. Eurasian Chem Commun. 2021; 3(7): 461-476. https://doi.org/10.22034/ecc.2021.279489.1158
Zari AT, Zari TA, Hakeem KR. Anticancer properties of eugenol: A review. Molecules. 2021; 26(23): 7407. https://doi.org/10.3390/molecules26237407
Freshney RI. Culture of animal cells: a manual of basic technique and specialized applications. John Wiley & Sons. 2015; 7th Scotland, 684. https://doi.org/10.1002/9780470649367