تأثير طاقة الليزر النبضي على خصائص بلازما النيكل المنتجة بنظام البلازما المحتثة بالليزر

محتوى المقالة الرئيسي

Sabah N. Mazhir
https://orcid.org/0000-0003-4593-0343
Huda H. Abbas

الملخص

تُستخدم تقنية قياس طيف الانبعاث البصري ( OES) لتحليل البلازما المتولدة من هدف (النيكل) المضاء باستخدام ليزر            Q- Switched (Nd: YAG) بطاقات مختلفة في الهواء. تم استخدام طريقة التوسيع Boltzmann-Plot و Stark لحساب معاملات البلازما بما في ذلك كثافة الإلكترون (ne) ودرجة حرارة الإلكترون (Te) وتردد البلازما (fp) وطول ديباي (λD). يتضح أن قيم (ne) و (Te) و (λD) و (fp) تزداد بزيادة طاقة الليزر مع قيم درجة حرارة الإلكترون المحسوبة التي تتراوح بين (0.934 - 1.479) الكترون - فولت.

تفاصيل المقالة

كيفية الاقتباس
1.
تأثير طاقة الليزر النبضي على خصائص بلازما النيكل المنتجة بنظام البلازما المحتثة بالليزر. Baghdad Sci.J [انترنت]. 1 مايو، 2024 [وثق 21 مايو، 2024];21(5):1684. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8327
القسم
article

كيفية الاقتباس

1.
تأثير طاقة الليزر النبضي على خصائص بلازما النيكل المنتجة بنظام البلازما المحتثة بالليزر. Baghdad Sci.J [انترنت]. 1 مايو، 2024 [وثق 21 مايو، 2024];21(5):1684. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8327

المراجع

Burger M, Skočić M, Bukvić S. Study of self-absorption in laser induced breakdown spectroscopy. Spectrochim Acta B: At. Spectrosc. 2014; 101: 51-56. https://doi.org/10.1016/j.sab.2014.07.007 .

Majeed NF, Naeemah M R, Ali AH. Spectroscopic analysis of clove plasma parameters using optical emission spectroscopy. Iraqi J Sci. 2021; 62(8): 2565–2570. https://doi.org/10.24996/ijs.2021.62.8.9 .

Ahghari M R, Soltaninejad V, Maleki A. Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities. Sci Rep. 2020; 10: 12627. https://doi.org/10.1038/s41598-020-69679-4.

Abdalameer NK, Jassim RH, Jebur EK, Mazhir SN. Laser pulse's frequency effect on plasma parameters for titanium dioxide produced by FHG of a Q-Switched Nd: YAG pulse laser. Int J Nanosci. 2023; 21(2): 1-7. https://doi.org/10.1142/S0219581X23500114.

Sadaa AM, Al Abdullah ZT. Green Synthesis of Nickel Nanoparticles and their Application of Removal of Aliphatic Hydrocarbons from Crude Oil. Iraqi J Sci. 2021; 62(11): 4333–4341. https://doi.org/10.24996/ijs.2021.62.11(SI).14.

Qasim S A, Mazhir SN. Spectroscopic Analysis Of ZnO:Fe3O4 Using Laser-InducedBreakdown Spectroscopy. AIP Conf Proc. 2023; 2475: 090011. https://doi.org/10.1063/5.0104215.

Khan Z H, Ullah H M, Rahman B, Talukder A I, Abedin K M, Haider A F. Laser-Induced Breakdown Spectroscopy (LIBS) for Trace Element Detection: A Review. J Spectrosc. 2022; 2022 3887038. https://doi.org/10.1155/2022/3887038 .

Yaseen W I, Ahmed A F, Alshakarchi D, Muliak F. Development of a high-power LC circuit for generating arc plasma and diagnostic via optical emission spectroscopy. Appl Phys A. 2022; 128(2): 148. http://dx.doi.org/10.1007/s00339-022-05301-w .

Yahya K A, Rasheed B F. Effects of Discharge Current and Target Thickness in Dc -Magnetron Sputtering on Grain Size of Copper Deposited Samples. Baghdad Sci J. 2019; 16(1): 84-87. http://dx.doi.org/10.21123/bsj.2019.16.1.0084.

Mazhir S N, Abdullah N A, Rauuf A F, Ali A H, Al-Ahmed H. Effects of Gas Flow on Spectral Properties of Plasma Jet Induced by Microwave. Baghdad Sci J. 2018; 15(1): 81-86. https://doi.org/10.21123/bsj.2018.15.1.0081 .

Naeema N, Kudher A, Mohammed G. Study of the Spectroscopic Performance of Laser Produced CdTe, and CdTe:Ag Plasma. IOP Conf Ser Mater Sci Eng. 2020; 757, 012025. https://doi.org/10.1088/1757-899X/757/1/012025

Abdalameer N Kh, Mazhir S N. Laser-Induced Plasma Atomic and Ionic Emission during Target Ablation. Int J Nanosci. 2021; 20(5): 1–8. https://doi.org/10.1142/S0219581X21500447 .

National Institute of Standards and Technology. Atomic spectra database DB/OL. 2017. https://www.nist.gov/pml/atomic-spectra-database.

Shehab M M. Using Boltzmann Plots Method to Calculate Plasma Parameters Generated from a Magnesium Target Using Optical Emission Spectroscopy Technique. Int J Nanosci. 2022; 21(4), 2250029.‏ https://doi.org/10.1142/S0219581X22500296 .

Singh JP, Thakur SN. Laser-Induced Breakdown Spectroscopy. 1st Edition (Elsevier Science, 2007.

Raja I LP, Valanarasub S, Isaac R S R, Ramudud M, Bitlae A. The role of silver doping in tuning the optical absorption, energy gap, photoluminescence properties of NiO thin films for UV photosensor applications. Optik. 2022; 254: 168634. https://doi.org/10.1016/j.ijleo.2022.168634 .

Zarenezhad E, Abdulabbas H.T, Marzi M, Ghazy E, Ekrahi M, Pezeshki B, Ghasemian A, Moawad AA. Nickel Nanoparticles: Applications and Antimicrobial Role against Methicillin-Resistant Staphylococcus aureus Infections. Antibiotics (Basel). 2022; 11(9):1208. https://doi.org/10.3390/antibiotics11091208 .

Fikry M, Tawfk W, Omar M M. Investigation on the effects of laser parameters on the plasma profile of copper using picosecond laser induced plasma spectroscopy. Opt Quant Electron. 2020; 52: 249. https://doi.org/10.1007/s11082-020-02381-x .

Wiese W L, Fuhr J R, Lesage A. Experimental Stark Widths and Shifts for Spectral Lines of Neutral and Ionized Atoms (A Critical Review of Selected Data for the Period 1989 through 2000. J Phys Chem Ref Data. 2020; 31(3): 819-927. https://doi.org/10.1063/1.1486456 .

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.