حلول الموجة المتنقلة للمعادلات التفاضلية الكسرية الناشئة في البلازما الدافئة
محتوى المقالة الرئيسي
الملخص
تهدف هذه الورقة إلى دراسة الأنظمة التفاضلية الكسرية الناشئة في البلازما الدافئة ، والتي تعرض حلولا من النوع الموجي المتنقل. تستخدم معادلات الوقت-كسور كورتويغ-دي فريس (كدف) ومعادلات الوقت-كسور كاواهارا لتحليل البلازما الباردة الخالية من الاصطدام ، والتي تعرض موجات المغناطيس الصوتية وتشكيل موجات الصدمة على التوالي. لحل المعادلات المقترحة ، تم استخدام طريقة التحلل لحل المسألة المقترحة. كذلك تم مناقشة التقارب والوحدانية للحل الذي تم الحصول عليه. لإلقاء الضوء على فعالية الطريقة المقدمة ، تم الحصول على حلول هذه المعادلات وتم مقارنتها مع الحل الدقيق. علاوة على ذلك ، تم الحصول على حلول لقيم مختلفة من الوقت-ترتيب كسري وتم تمثيلها بيانيا.
Received 19/1/2023
Revised 13/2/2023
Accepted 14/2/2023
Published 1/3/2023
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Baleanu D, Agarwal RP. Fractional Calculus in the Sky. Adv Differ Equ. 2021; 117(2021): 2-9. https://doi.org/10.1186/s13662-021-03270-7
Asaduzzaman M, Ali MZ. Existence of Multiple Positive Solutions to the Caputo-Type Nonlinear Fractional Differential Equation with Integral Boundary Value Conditions. Fixed Point Theory. 2022; 23(1): 127-142. https://doi.org/10.24193/fpt-ro.2022.1.08
Cevikel AC, Aksoyy E. Soliton Solutions of Nonlinear Fractional Differential Equations with Their Applications in Mathematical Physics. Rev Mex de Fis. 2021; 67(3): 422-428. https://doi.org/10.31349/RevMexFis.67.422
Johansyah MD, Supriatna AK, Rusyaman E, Saputra J. Solving Differential Equations of Fractional Order Using Combined Adomian Decomposition Method with Kamal Integral Transformation. J Math Stat. 2022; 10(1): 187-194. https://doi.org/10.13189/ms.2022.100117
Enadi et al. New Approach for Solving Three Dimensional Space Partial Differential Equation. Baghdad Sci J. 2019; 16(3(Suppl.)): 0786. https://doi.org/10.21123/bsj.2019.16.3(Suppl.).0786
Verma P, Kumar M. An Analytical Solution of Linear/Nonlinear Fractional-Order Partial Differential Equations and with New Existence and Uniqueness Conditions. Proc Natl Acad Sci India Sect A Phys Sci. 2022; 92(1): 1-9. https://doi.org/10.1007/s40010-020-00723-8
Zhang P, Hao X, Liu L. Existence and Uniqueness of the Global Solution for a Class of Nonlinear Fractional Integro-Differential Equations in a Banach Space. Adv Differ Equ. 2019; 1: 1-10. https://doi.org/10.1186/s13662-019-2076-6
Zhang X, Cao J. A High Order Numerical Method for Solving Caputo Nonlinear Fractional Ordinary Differential Equations. AIMS Mathematics. 2021; 6(12): 13187-13209. http://dx.doi.org/10.3934/math.2021762
Ziada E. Analytical Solution of Linear and Nonlinear Fractional Differential Equations. Nile J Basic Sci. 2021; 1(1): 1-13. http://dx.doi.org/10.21608/njbs.2021.202511
Kulkarni S, Takale K. Application of Adomian Decomposition Method for Solving Linear and Nonlinear Klein-Gordon Equations. Int J Contemp Math Sci. 2015; 1(2): 21-28. https://www.researchgate.net/publication/319183333_APPLICATION_OF_ADOMIAN_DECOMPOSITION_METHOD_FOR_SOLVING_LINEAR_AND_NONLINEAR_KLEIN-GORDON_EQUATIONS
Adomian G. A Review of the Decomposition Method in Applied Mathematics. J Math Anal Appl. 1988; 135(2): 501-544. https://doi.org/10.1016/0022-247X(88)90170-9
Hasan PM, Sulaiman NA. Convergence Analysis for the Homotopy Perturbation Method for a Linear System of Mixed Volterra-Fredholm Integral Equations. Baghdad Sci J. 2020; 17(3(Suppl.)): 1010. https://doi.org/10.21123/bsj.2020.17.3(Suppl.).1010
Kumar M, Umesh. Recent Development of Adomian Decomposition Method for Ordinary and Partial Differential Equations. Int J Appl Comput Math 2022; 8(2): 25. http://dx.doi.org/10.1007/s40819-022-01285-6
Jeffrey A. Role of the Korteweg-de Vries Equation in Plasma Physics. Q J Roy Astron Soc. 1973; 14: 183. https://adsabs.harvard.edu/full/1973QJRAS..14..183J
Chandra S, Goswami J, Sarkar J, Das C, Nandi D, Ghosh B. Formation of Electron Acoustic Shock Wave in Inner Magnetospheric Plasma. Indian J Phys. 2022; 96(12): 1-15. http://dx.doi.org/10.1007/s12648-021-02276-x
Ismael HF, Murad MAS, Bulut H. Various Exact Wave Solutions for KdV Equation with Time-Variable Coefficients. J Ocean Eng Sci. 2022; 7(5): 1-9. http://dx.doi.org/10.1016/j.joes.2021.09.014
Wang DS, Xu L, Xuan Z. The Complete Classification of Solutions to the Riemann Problem of the Defocusing Complex Modified KdV Equation. J Nonlinear Sci. 2022; 32(1): 3. http://dx.doi.org/10.1007/s00332-021-09766-6
El-Wakil SA, Abulwafa EM, El-Shewy EK, Mahmoud AA. Ion-Acoustic Waves in Plasma of Warm Ions and Isothermal Electrons Using Time-Fractional KdV Equation. Chinese J Phys. 2011; 20(4): 040508. http://dx.doi.org/10.1088/1674-1056/20/4/040508
Podlubny I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. 1st edition. USA: Academic press; 1998. p. 340. https://www.sciencedirect.com/bookseries/mathematics-in-science-and-engineering/vol/198/suppl/C
Wazwaz AM. Partial Differential Equations and Solitary Waves Theory. Nonlinear physical science. Beijing: Higher Education Press Springer; 2009. p. 761. http://dx.doi.org/10.1007/978-3-642-00251-9