تحضير مركب من جزيئات نانوية جديد من اللاكتام وال PEلتحسين مواصفاتها

محتوى المقالة الرئيسي

Suad Muhsin Ali
https://orcid.org/0000-0002-8499-0296
Sanaa A. AL Sahib
https://orcid.org/0000-0002-3527-5464

الملخص

يدور هذا البحث حول خواص البولي ايثيلين (PE) باستخدام اللاكتام مع مركبات أكسيد النانو المعدنية المستخرجة من نبات (القرنفل) وهي براعم زهرة شجرة القرنفل كمثبت وعامل اختزال . حيث يستقر أكسيد النانو ويغطي البوليمر الطبيعي. الهدف من الدراسة هو أن أكسيد النانو يؤدي أفضل ترابط للمركبات المحضرة ، بسبب زيادة مساحة السطح ، وبالتالي القدرة على الارتباط بالبوليمر المحضر. والقدرة على الثبات الإلكتروني بسبب كثرة الروابط مما يسمح بتوزيع الشحنة الإلكترونية ثم تشتيتها خارج سطح البوليمر مما يحسن من خواص البوليمر ويجعله مادة صديقة للبيئة يسهل استخدامها تقنية مرتبطة بالصب. بحيث لا يضر بصحة الإنسان والكائنات الحية الأخرى. خلصت الدراسة إلى أنه تم تحضير جزيئات أكسيد الزنك النانوية من مصادر نباتية طبيعية ذات منتج عالي لاستخدامها كمحفز لتحضير المونومرات المهمة صناعياً ، كما تمت إضافة بوليمر لاكتام في وجود أكسيد الزنك المستخرج من النباتات (القرنفل). بوليمر اصطناعي يتحلل عندما يستهلكه الإنسان. تم تمييز جزيئات الأكسيد النانوية والمونومرات والبوليمرات باستخدام طرق التحليل الطيفي. وأشار تحليل FTIR و TGA وباستعمال حيود الأشعة السينية (XRD) والمسح المجهري الإلكتروني (SEM) والفحص المجهري للقوة الذرية، أن البوليمر الناتج عبارة عن مادة متجانسة ذات وزن جزيئي مرتفع مطعمة بمقاييس نانوية عالية الجودة.

تفاصيل المقالة

كيفية الاقتباس
1.
تحضير مركب من جزيئات نانوية جديد من اللاكتام وال PEلتحسين مواصفاتها. Baghdad Sci.J [انترنت]. 1 يوليو، 2024 [وثق 23 يناير، 2025];21(7):2331. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8537
القسم
article

كيفية الاقتباس

1.
تحضير مركب من جزيئات نانوية جديد من اللاكتام وال PEلتحسين مواصفاتها. Baghdad Sci.J [انترنت]. 1 يوليو، 2024 [وثق 23 يناير، 2025];21(7):2331. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8537

المراجع

Tofighy MA, Mohammadi T. Carbon nanotubes-polymer nanocomposite membranes for pervaporation. In: Polymer Nanocomposite Membranes for Pervaporation. Elsevier; 2020. p. 105–33.https://doi.org/10.1016/B978-0-12-816785-4.00005-7

Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC. Polymer Nanocomposites Having a High Filler Content: Synthesis, Structures, Properties, and Applications. Nanoscale. 2019; 11 (11): 4653–4682. https://doi.org/10.1039/C9NR00117D. PMID 30840003. S2CID 73475424

Beenish Inamuddin, Asiri AM. Electrospun polyaniline/polyvinyl alcohol/multiwalled carbon nanotubes nanofibers as promising bioanode material for biofuel cells. J Electroanal Chem (Lausanne Switz). 2017; 789: 181–7. http://dx.doi.org/10.1016/j.jelechem.2017.02.0257

Sharma A, Bhojak V, Kukshal V, Biswas SK, Patnaik A, Patnaik TK. Mechanical and erosion characteristics of natural fiber reinforced polymer composite: Effect of filler size. In: Energy, Environment, and Sustainability. Springer. 2019. p. 101–16. https://doi.org/10.1007/978-981-15-0434-1_6

Sonal S, Patnaik A, Kumar S, Godara M. Investigating influence of low fraction of polytetrafluoroethylene filler on mechanical and wear behavior of light-cured dental composite. Mater Res Express. 2019; 6 (8): 085403. http://dx.doi.org/10.1088/2053-1591/ab209a. S2CID 164705598.

Sarinthip T, Kambiz S, Jongchul S. ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges. Food Rev Int. 2020; 38: 537-565. https://doi.org/10.1080/87559129.2020.1737709

Bruno Rocha e Silva M, Tavares MIB, Oliveira da Silva E, Neto RPC. Dynamic and structural evaluation of poly(3-hydroxybutyrate) layered nanocomposites. Polym. 2013; 32(1): 165–74. http://dx.doi.org/10.1016/j.polymertesting.2012.09.006

Bagheri M, Mahmoodzadeh A. Polycaprolactone/graphene nanocomposites: Synthesis, characterization and mechanical properties of electrospun nanofibers. J Inorg Organomet Polym Mater.2020; 30(5): 1566–77. http://dx.doi.org/10.1007/s10904-019-01340-8

Semlali Aouragh Hassani F-Z, Kassab Z, El Achaby M, Bouhfid R, Qaiss A el K. Mechanical modeling of hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanoparticles. In: Cellulose Nanocrystal/Nanoparticles Hybrid Nanocomposites. Elsevier; 2021. p. 247–70.‏ https://doi.org/10.1016/B978-0-12-822906-4.00003-7

Monteiro MS de SB, Tavares MIB. The development and characterization of polycaprolactone and titanium dioxide hybrids. Adv Nanoparticles. 2018; 07(01): 11–27. http://dx.doi.org/10.4236/anp.2018.71002

Shaheer A K, Zakaria M Z, Mohammad H M, Ataur R, Mir Akmam N R, Mohammad Performance investigation of ZnO/PVA nanocomposite film for organic solar cell. Mater Today Proc 2021; 47(11). https://doi.org/10.1016/j.matpr.2021.05.197

Oliveira CT de, Junior JPC, Tavares MIB. The use of zinc oxide nanoparticles in Eva to obtain food packing films. Adv Nanoparticles. 2020; 09(03): 59–80. Available from: http://dx.doi.org/10.4236/anp.2020.93005

13. Abdul-Jabbar AT, Dhahir SA, Abood WM. Furfural Removal from Simulated Wastewater Using Zno Nanoparticles / H2O2 in Solar Photo catalysis Reactor. J Phys Conf Ser. 2021; 1818(1): 012048. http://dx.doi.org/10.1088/1742-6596/1818/1/012048

Alves LG, Ferreira LM, Melo ARA, Junior JPC, Tavares MIB. Crystallinity evaluation of oriented nanocomposites based on polypropylene and silica by time domain NMR. Macromol Symp. 2020; 394(1): 2000069. http://dx.doi.org/10.1002/masy.202000069

Oliveira FM, Martins L, Dencheva NV, Ezquerra TA, Denchev ZZ. Tunable electromagnetic interference shielding properties of binary thermoplastic composites prepared by reactive microencapsulation. ACS Appl Polym Mater. 2022; 4(5): 3482–90. http://dx.doi.org/10.1021/acsapm.2c00084

.Sarmah D, Kumar A. Conducting polymer-based ternary composites for supercapacitor applications. In: Conducting Polymer-Based Energy Storage Materials. CRC Press; 2019. p. 301–32. https://doi.org/10.1201/9780429202261-19

Shaba EY, Jacob JO, Tijani JO, Suleiman MAT. A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticles and their application in wastewater treatment. Appl Water Sci. 2021; 11(2). http://dx.doi.org/10.1007/s13201-021-01370-z

Tomara G, Anastassopoulos D, József K. Effect of moisture and filler content on the structural, thermal, and dielectric properties of polyamide-6/boehmite alumina Nano composites: Polyamide-6/Boehmite Alumina nanocomposites. Polym Int. 2019; 68(5). https://doi.org/10.1002/pi.5777

Thejeel K, Abdul Kareem S, Ascar I, Hussein M. Synthesis of new polymers linked to heterocyclic using zinc oxide with nanostructures extracted from natural sources. Egypt J Chem 2021; 65(4): 579-589. http://dx.doi.org/10.21608/ejchem.2021.92971.4644.

Insoo K, Karthika V, Gopinath K, Sarinthip T, Kambiz S Jongchul S. ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges. Food Rev Int. 2020: 1-29. https://doi.org/10.1080/87559129.2020.1737709

Memenfo C, Mbey J, Degoutin S, Tabary N. Intercalation of Ciprofloxacin in Naturally Occurring Smectite from Bana: Potentiality as Drug Delivery System and Antimicrobial Effects on Escherichia coli and Staphylococcus aureus. J Mater Sci Chem Eng. 2021; 09(08): 21-40. https://doi.org/10.4236/msce.2021.98003

Linhart AN, Danhausen DM, Keleher JJ. Design of a multi-layer hydrogel nanocomposite for real-time evaluation of properties relevant to wound management applications. Meet Abstr. 2019; MA2019-02(54): 2356–2356. http://dx.doi.org/10.1149/ma2019-02/54/2356

Adel, N, Hassan, S S, Awad S H. Green preparation of new nanoparticles composite from chitosan and zeolite to remove excess concentrations of iron and copper from wastewater. J Green Eng. 2021; 11(2): 1195–1212.23.

Rojas K, Canales D, Amigo N, Montoille L, Cament A, Rivas L M, et al. Effective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles. Compos B Eng. 2019: 172: 173–178. https://doi.org/10.1016/j.compositesb.2019.05.054

Ruaa M D, Alsahib, S A, Ascar Ib F. Synthesis, characterization, and cyclization of pyran using Ag2O nanoparticles from natural source ‘Ginger’. Iraqi J Agric Sci. 2021. ; 52(5): 1171-84. https://doi.org/10.36103/ijas.v52i5.1455

Mohsin GF, Al-Kaabi WJ, Alzubaidi AK. Describing Polymers Synthesized from Reducing Sugars and Ammonia Employing FTIR Spectroscopy. Baghdad Sci J. 2022; 19(6): 1297. https://doi.org/10.21123/bsj.2022.6527

Aubaeed MA, Oda AM, AL-Sultan EYA. Isolation and classification of green alga Stigeoclonium attenuated and evaluation of its ability to prepare zinc oxide nanoflakes for methylene blue photodegradation by sunlight. Baghdad Sci J .2023; 10(2): 1241 http://dx.doi.org/10.21123/bsj.2023.7231

Hassan AK, Atiya MA, Luaibi IM. A Green Synthesis of Iron/Copper Nanoparticles as a Catalytic of Fenton-like Reactions for Removal of Orange G Dye. Baghdad Sci.J. 2022; 19(6): 2411. https://doi.org/10.21123/bsj.2022.6508