إجمالي محتويات الفينول والفلافونويد وفيتامين ج مع نشاط مضاد للأكسدة لأوراق القراص التي تنمو في زاخو ، إقليم كوردستان ، العراق

محتوى المقالة الرئيسي

Gharbia A. Omer
https://orcid.org/0000-0003-3790-5199
Lina Y. Mohammed

الملخص

يُزرع جنس Urtica dioica L. (Urticaceae) بشكل متكرر في إقليم كردستان العراق ويستخدم كعلاج شعبي من قبل السكان المحليين لعلاج مجموعة متنوعة من الأمراض. الغرض من هذه الدراسة هو تقييم إجمالي محتويات الفينول والفلافونويد وفيتامين ج باستخدام طريقة القياس الطيفي مع تحديد الأنشطة المضادة للأكسدة للمذيبات المختلفة مثل (المائي ، الإيثانول ، أسيتات الإيثيل ، الكلوروفورم و هكسان) المتدفقة التي تختلف باختلاف اختبارات مضادات الأكسدة مع تراكيز مختلفة وهي (1،1-ثنائي فينيل -2 بيكريل هيدرازيل  ، اختبار القدرة المختزل ، القدرة الكلية لمضادات الأكسدة ، كسح أكسيد النيتريك ، جذور الهيدروكسيل ، β-carotene- حمض اللينوليك ومخلبات الحديد) وحمض الأسكوربيك كمرجع معياري. أوضحت نتائجنا أن تحديد إجمالي محتويات الفينول والفلافونويد باستخدام طرق فولين سيوكالتو وكلوريد الألومنيوم أظهر أن مستخلصات المذيبات القطبية أظهرت محتوى عاليًا من الفينول والفلافونويد بينما يحتوي مستخلص أسيتات الإيثيل على نسبة عالية من فيتامين ج. بالإضافة إلى ذلك، أظهرت النتائج أن المستخلصات لها تأثيرات مضادة للأكسدة ملحوظة مقارنة بمضادات الأكسدة القياسية مثل حمض الأسكوربيك. كان لمستخلص الإيثانول لأوراق U. dioica L أنشطة تنظيف أقوى من مستخلصات المذيبات الأخرى لجذور 1،1-ثنائي فينيل -2 بيكريل هيدرازيل و الهيدروكسيل. أظهر مستخلص الماء تأثيرًا مضادًا للأكسدة أعلى من المستخلصات الأخرى لتقليل مقايسات القوة وأكسيد النيتريك مع انخفاض نشاط مضادات الأكسدة لـ β-carotene / حمض اللينوليك وإجمالي اختبارات القدرة المضادة للأكسدة. في المقابل ، كان للهكسان غير القطبي أعلى نشاط مضاد للأكسدة لمقايسة مخلب الحديد. تُظهر الدراسة الحالية أن مستخلصات أوراق U. dioica Lهي مصدر طبيعي حيوي لمضادات الأكسدة ويمكن استخدامها في المنتجات الغذائية بالإضافة إلى تطبيقات التغذ.

تفاصيل المقالة

كيفية الاقتباس
1.
إجمالي محتويات الفينول والفلافونويد وفيتامين ج مع نشاط مضاد للأكسدة لأوراق القراص التي تنمو في زاخو ، إقليم كوردستان ، العراق. Baghdad Sci.J [انترنت]. 1 مايو، 2024 [وثق 22 يناير، 2025];21(5):1592. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8658
القسم
article

كيفية الاقتباس

1.
إجمالي محتويات الفينول والفلافونويد وفيتامين ج مع نشاط مضاد للأكسدة لأوراق القراص التي تنمو في زاخو ، إقليم كوردستان ، العراق. Baghdad Sci.J [انترنت]. 1 مايو، 2024 [وثق 22 يناير، 2025];21(5):1592. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8658

المراجع

Mailloux R J. An Update on Mitochondrial Reactive Oxygen Species Production. Antioxidants 2020; 9 (6): 472. https://doi.org/10.3390/antiox9060472

Mustafa A J, Ismail P A. Association of Potent Inflammatory Cytokine and Oxidative DNA Damage Biomarkers in Stomach Cancer Patients. Baghdad Sci J. 2022; 19 (6): 1313. http://dx.doi.org/10.21123/bsj.2022.6589

Juan C A, Pérez de la Lastra J M, Plou F J, Pérez-Lebeña E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci. 2021; 22 (9): 4642. https://doi.org/10.3390/ijms22094642

Li P, Liu H, Shi X, Prokosch V. Hydrogen Sulfide: Novel Endogenous and Exogenous Modulator of Oxidative Stress in Retinal Degeneration Diseases. Molecules 2021; 26 (9): 2411. https://doi.org/10.3390/molecules26092411

Aziz M A, Diab A S, Mohammed A A. Antioxidant Categories and Mode of Action; IntechOpen London, UK, 2019. https://doi.org/10.5772/intechopen.83544

Jabbar A A. Onosma Mutabilis: Phytochemical Composition, Antioxidant, Cytotoxicity, and Acute Oral Toxicity. Food Sci Nutr. 2021; 9 (10): 5755–5764. https://doi.org/10.1002/fsn3.2544

Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Front Plant Sci. 2021; 11: 552969. https://doi.org/10.3389/fpls.2020.552969

Grauso L, de Falco B, Lanzotti V, Motti R. Stinging Nettle, Urtica Dioica L.: Botanical, Phytochemical and Pharmacological Overview. Phytochem. Rev. 2020; 19 (6): 1341–1377. https://doi.org/10.1007/s11101-020-09680-x

Sharifi-Rad J, Bahukhandi A, Dhyani P, Sati P, Capanoglu E, Docea A O, et al. Therapeutic Potential of Neoechinulins and Their Derivatives: An Overview of the Molecular Mechanisms behind Pharmacological Activities. Front Nutr. 2021; 8: 664197. https://doi:10.3389/fnut.2021.664197

Bhusal K K, Magar S K, Thapa R, Lamsal A, Bhandari S, Maharjan R, et al. Nutritional and Pharmacological Importance of Stinging Nettle (Urtica Dioica L.): A Review. Heliyon 2022: e09717. https://doi.org/10.1016/j.heliyon.2022.e09717

Devkota H P, Paudel K R, Khanal S, Baral A, Panth N, Adhikari-Devkota A, et al. Stinging Nettle (Urtica Dioica L.): Nutritional Composition, Bioactive Compounds, and Food Functional Properties. Molecules 2022; 27 (16): 5219. https://doi.org/10.3390/molecules27165219

Koczkodaj S, Przybył J L, Kosakowska O, Węglarz Z, Bączek K B. Intraspecific Variability of Stinging Nettle (Urtica Dioica L.). Molecules 2023; 28 (3): 1505. https://doi.org/10.3390/molecules28031505

Paulauskienė A, Tarasevičienė Ž, Laukagalis V. Influence of Harvesting Time on the Chemical Composition of Wild Stinging Nettle (Urtica Dioica L.). Plants 2021; 10 (4): 686. https://doi.org/10.3390/plants10040686

Dhouibi R, Affes H, Salem M Ben, Hammami S, Sahnoun Z, Zeghal K M, et al. Screening of Pharmacological Uses of Urtica Dioica and Others Benefits. Prog Biophys Mol Biol. 2020; 150: 67–77. https://doi.org/10.1016/j.pbiomolbio.2019.05.008

Zawawi S S A, Zamli Z, SAAD N. The Effectiveness and Application of Urtica Dioica (Stinging Nettle) for Musculoskeletal Disorders: A Systematic Review and Meta-Analysis. Int J Allied Heal Sci. 2023; 7 (1): 2863–2874. https://journals.iium.edu.my/ijahs/index.php/IJAHS/article/view/755

Hussein N N, Marzoog T R, Al-Niaame A E. The Antibacterial, Antiheamolytic, and Antioxidant Activities of Laurus Nobilis and Alhagi Maurorum Native to Iraq. Baghdad Sci J. 2019; 16 (3 Suppl.): 707–712. https://di.org/10.21123/bsj.2019.16.3(Suppl.).0707

Marjoni M R, Naim A, Zubaidah Y F, Nadia R. The Effect of Different Extraction Solvents on Total Phenolic and Flavonoid Total of Snake Plant (Sansevieria Trifasciata Var. Laurentii). J Pharm Negat Results 2023; 14 (1): 38–43. https://doi.org/10.47750/pnr.2023.14.01.008

Diab F, Khalil M, Lupidi G, Zbeeb H, Salis A, Damonte G, et al. Influence of Simulated In Vitro Gastrointestinal Digestion on the Phenolic Profile, Antioxidant, and Biological Activity of Thymbra Spicata L. Extracts. Antioxidants 2022; 11 (9): 1778. https://doi.org/10.3390/antiox11091778

Mazhar M W, Ishtiaq M, Maqbool M, Ajaib M, Hussain I, Hussain T, et al. Synergistic Application of Calcium Oxide Nanoparticles and Farmyard Manure Induces Cadmium Tolerance in Mung Bean (Vigna Radiata L.) by Influencing Physiological and Biochemical Parameters. PLoS One 2023; 18 (3): e0282531. https://doi.org/10.1371/journal.pone.0282531

Sadeq O, Mechchate H, Es-Safi I, Bouhrim M, Jawhari F, Zahra, et al. Phytochemical Screening, Antioxidant and Antibacterial Activities of Pollen Extracts from Micromeria Fruticosa, Achillea Fragrantissima, and Phoenix Dactylifera. Plants 2021; 10 (4): 676. https://doi.org/10.3390/plants10040676

Ergün F. Effects of Drying Methods on Amounts of Phenolic and Flavonoid Compounds and Antioxidants Capacity of Plantago lanceolata L. J. Anim Plant Sci. 2023, 33 (1): 159–165. https://doi.org/10.36899/JAPS.2023.1.0604

El Khomsi M, Kara M, Hmamou A, Assouguem A, Al Kamaly O, Saleh A, et al. In Vitro Studies on the Antimicrobial and Antioxidant Activities of Total Polyphenol Content of Cynara Humilis from Moulay Yacoub Area (Morocco). Plants 2022; 11 (9): 1200. https://doi.org/10.3390/plants11091200

Ezeanyika L U S, Anosike C A, Oji C N, Chibuogwu C C. Phytochemistry, Micronutrient Composition, and Antioxidant Potentials of Citrus Maxima (Shaddock) Fruit Juice. J Pharmacogn Phytochem. 2022; 11 (5): 20–23. https://doi.org/10.22271/phyto.2022.v11.i5a.14498

Saravanakumar A, Periyasamy P, Jang H T. In Vitro Assessment of Three Different Artemisia Species for Their Antioxidant and Anti-Fibrotic Activity. Biocatal. Agric. Biotechnol. 2019; 18: 101040. https://doi.org/10.1016/j.bcab.2019.101040

Nickavar B, Esbati N. Evaluation of the Antioxidant Capacity and Phenolic Content of Three Thymus Species. J Acupunct Meridian Stud. 2012; 5 (3): 119–125. https://doi.org/10.1016/j.jams.2012.03.003

Hechaichi F Z, Bendif H, Bensouici C, Alsalamah S A, Zaidi B, Bouhenna M M, et al. Phytochemicals, Antioxidant and Antimicrobial Potentials and LC-MS Analysis of Centaurea Parviflora Desf. Extracts. Molecules 2023; 28 (5): 2263. https://doi.org/10.3390/molecules28052263

Augspole I, Duma M, Ozola B, Cinkmanis I. Phenolic Profile of Fresh and Frozen Nettle, Goutweed, Dandelion and Chickweed Leaves. Food Balt 2017; pp 27–28. https:// doi.org/10.22616/foodbalt.2017.028

Ghaima K K, Hashim N M, Ali S A. Antibacterial and Antioxidant Activities of Ethyl Acetate Extract of Nettle (Urtica Dioica) and Dandelion (Taraxacum Officinale). J Appl Pharm Sci. 2013; 3 (5): 96. https://doi.org/10.7324/JAPS.2013.3518

Zeković Z, Cvetanović A, Švarc-Gajić J, Gorjanović S, Sužnjević D, Mašković P, et al. Chemical and Biological Screening of Stinging Nettle Leaves Extracts Obtained by Modern Extraction Techniques. Ind Crops Prod. 2017; 108: 423–430. https://doi.org/10.1016/j.indcrop.2017.06.055

Fattahi S, Zabihi E, Abedian Z, Pourbagher R, Ardekani A M, Mostafazadeh A, et al. Total Phenolic and Flavonoid Contents of Aqueous Extract of Stinging Nettle and in Vitro Antiproliferative Effect on Hela and BT-474 Cell Lines. Int J Mol Cell Med. 2014; 3 (2): 102. https://pubmed.ncbi.nlm.nih.gov/25035860

Külcü D B, Gökışık C D, Aydın S. An Investigation of Antibacterial and Antioxidant Activity of Nettle (Urtica Dioica L.), Mint (Mentha Piperita), Thyme (Thyme Serpyllum) and Chenopodium Album L. Plants from Yaylacık Plateau, Giresun, Turkey. Turkish J Agric Sci Technol. 2019; 7 (1): 73–80. https://doi.org/10.24925/turjaf.v7i1.73-80.2123

Brancaccio M, Mennitti C, Cesaro A, Fimiani F,Vano M, Gargiulo B, et al. The Biological Role of Vitamins in Athletes’ Muscle, Heart and Microbiota. Int J Environ Res Public Health 2022; 19 (3): 1249. https://doi.org/10.3390/ijerph19031249

Wald E L, Badke C M, Hintz L K, Spewak M, Sanchez-Pinto L N. Vitamin Therapy in Sepsis. Pediatr Res. 2022; 91 (2): 328–336. https://doi.org/10.1038/s41390-021-01673-6

Trifunschi S, Zugravu C A, Munteanu M F, Borcan F,Pogurschi E N. Determination of the Ascorbic Acid Content and the Antioxidant Activity of Different Varieties of Vegetables Consumed in Romania, from Farmers and Supermarkets. Sustainability 2022; 14 (21): 13749. https://doi.org/10.3390/su142113749

Rani S, Bhatia D A. Literature Review on Urtica Dioica: An Ordinary Creature with Extraordinary Features. 2021. https://doi.org/10.9734/JPRI/2021/v33i54A33735

Skalozubova T A, Reshetova V O. Leaves of Common Nettle (Urtica Dioica L.) as a Source of Ascorbic Acid (Vitamin C). World Appl Sci J. 2013; 28 (2): 250–253. https://doi.org/10.5829/idosi.wasj.2013.28.02.13792

Ioana N, Viorica I, Diana-Carolina I, Valeria R. Preliminary Research Regarding the Therapeutic Uses of Urtica Dioica l Note Ii. The Dynamics of Accumulation of Total Phenolic Compounds and Ascorbic Acid. Farmacia. 2013; 61 (2): 276–283. https://www.researchgate.net/publication/283655706

Dimitrijević V D, Krstić N S, Stanković M N, Arsić I, Nikolić R S. Biometal and Heavy Metal Content in the Soil-Nettle (Urtica Dioica L.): System from Different Localities in Serbia. Adv Technol. 2016; 5 (1): 17–22. https://doi.org/10.5937/savteh1601017D

Šic Žlabur J, Radman S,Opačić N, Rašić A, Dujmović M, Brnčić M, et al. Application of Ultrasound as Clean Technology for Extraction of Specialized Metabolites From Stinging Nettle (Urtica Dioica L.). Front Nutr. 2022; 684. https://doi.org/10.3389/fnut.2022.870923

Alkadi H. A Review on Free Radicals and Antioxidants. Infect Disord Targets. 2020; 20 (1): 16–26. https://doi.org/ 10.2174/1871526518666180628124323.

Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey R. P, et al. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus Religiosa. Molecules 2022; 27 (4): 1326. https://doi.org/ 10.3390/molecules27041326.

Flórez M, Cazón P, Vázquez M. Antioxidant Extracts of Nettle (Urtica Dioica) Leaves: Evaluation of Extraction Techniques and Solvents. Molecules 2022; 27 (18): 6015. https://doi.org/10.3390/molecules27186015

Kukrić Z Z, Topalić-Trivunović L N, Kukavica B M, Matoš S B, Pavičić S S, Boroja M M, et al. Characterization of Antioxidant and Antimicrobial Activities of Nettle Leaves (Urtica Dioica L.). Acta Period Technol. 2012; 43: 257–272. https://doi.org/10.2298/APT1243257K

Bhatt B D, Parajuli G C. Study on Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and Antioxidant Activities of Urtica Dioica of Nepalese Origin. J Nepal Chem Soc. 2017; 36: 68–73. https://doi.org/10.3126/jncs.v36i0.34609

Xiao F, Xu T, Lu B, Liu R. Guidelines for Antioxidant Assays for Food Components. Food Front. 2020; 1 (1): 60–69. https://doi.org/10.1002/fft2.10

Singh M, Sengar B. Study on Phytochemical and Antioxidative potential of Leaf Extract of Stinging Nettle Urtica dioica L in Uttarakhand, India. J Emerg Technol Innov Res. 2019; 6 (1): 291–297.

Joshi B C, Mukhija M, Kalia A N. Pharmacognostical Review of Urtica Dioica L. Int J Green Pharm. 2014; 8 (4): 202-209. https://doi.org/10.22377/ijgp.v8i4.414

Sharma S, Padhi S, Kumari M, Patnaik S, Sahoo D. Antioxidant Potential of Selected Wild Edible Leafy Vegetables of Sikkim Himalayan Region: Effects of Cooking Methods and Gastrointestinal Digestion on Activity. Front Nutr. 2022; 9: 1-10. https://doi.org/ 10.3389/fnut.2022.861347

Coelho A D, de Souza C K, Bertolucci S K V, de Carvalho A A, Santos G C,de Oliveira T, et al. Wavelength and Light Intensity Enhance Growth, Phytochemical Contents and Antioxidant Activity in Micropropagated Plantlets of Urtica Dioica L. Plant Cell Tissue Organ Cult. 2021; 145 (1): 59–74. https://doi.org/10.1007/s11240-020-01992-2

Guidea A, Zăgrean-Tuza C, Mot A C, Sârbu C. Comprehensive Evaluation of Radical Scavenging, Reducing Power and Chelating Capacity of Free Proteinogenic Amino Acids Using Spectroscopic Assays and Multivariate Exploratory Techniques. Spectrochim. Acta Part A Mol. Biomol Spectrosc. 2020; 233: 118158. https://doi.org/doi: 10.1016/j.saa.2020.118158.

Semwal S, Mukhija M, Joshi B C. Antioxidant Potential and Total Phenolic Content of Urtica Dioica (Whole Plant). J Appl Pharm. 2015; 7: 120–128.

Joshi B C, Prakash A, Kalia A N. Hepatoprotective Potential of Antioxidant Potent Fraction from Urtica Dioica Linn.(Whole Plant) in CCl4 Challenged Rats. Toxicol reports 2015; 2: 1101–1110. httpa://doi.org/ 10.1016/j.toxrep.2015.07.020

Kataki M S, Murugamani V, Rajkumari A, Mehra P S, Awasthi D, Yadav R S. Antioxidant, Hepatoprotective, and Anthelmintic Activities of Methanol Extract of Urtica Dioica L. Leaves. Pharm Crop. 2012; 3 (1): 38–46. https://doi.org/10.2174/2210290601203010038

Đurović S, Šorgić S, Popov S, Pezo L, Mašković P, Blagojević S, et al. Recovery of Biologically Active Compounds from Stinging Nettle Leaves Part I: Supercritical Carbon dioxide extraction. Food Chem. 2021;373 B: 131724. https://doi.org/10.3390/foods12040809

Mehdi M, Abolfazl K, Sahar G K, Ashkan J J, Farzad A, Afshin A B. Antioxidative Effects of Iranian Urtica Dioica L. Extracts on the Oxidation of Sunflower Oil. J Med Plants Res. 2011; 5 (18): 4438–4445. https://doi.org/10.5897/JMPR.9000237

Başyiḡit B, Mustafa Ç A M, Akyurt B. Phenolic Compounds Content, Antioxidant and Antidiabetic Potentials of Seven Edible Leaves. Gıda 2018; 43 (5): 876–885. https://doi.org/10.15237/gida.GD18076

Zouari Bouassida K, Bardaa S, Khimiri M, Rebaii T, Tounsi S, Jlaiel L, et al. Exploring the Urtica Dioica Leaves Hemostatic and Wound-Healing Potential. Biomed Res Int. 2017; https://doi.org/10.1155/2017/1047523

Galaris D, Barbouti A, Pantopoulos K. Iron Homeostasis and Oxidative Stress: An Intimate Relationship. Biochim. Biophys. Acta (BBA)-Molecular Cell Res. 2019; 1866 (12): 118535. https://doi.org/ 10.1016/j.bbamcr.2019.118535.

Hajji M, Hamdi M, Sellimi S, Ksouda G, Laouer H, Li S, et al. Structural Characterization, Antioxidant and Antibacterial Activities of a Novel Polysaccharide from Periploca Laevigata Root Barks. Carbohydr Polym. 2019; 206: 380–388. https://doi.org/ 10.1016/j.carbpol.2018.11.020.

Kasouni A I, Chatzimitakos T G, Stalikas C D, Trangas T, Papoudou-Bai A, Troganis A N. The Unexplored Wound Healing Activity of Urtica Dioica L. Extract: An In Vitro and In Vivo Study. Molecules. 2021; 26 (20): 6248. https://doi.org/10.3390/molecules26206248.

Vajic U-J, Grujic-Milanovic J, Miloradovic Z, Jovovic D, Ivanov M, Karanovic D, et al. Urtica Dioica L. Leaf Extract Modulates Blood Pressure and Oxidative Stress in Spontaneously Hypertensive Rats. Phytomedicine. 2018; 46: 39–45. https://doi.org/10.1016/j.phymed.2018.04.037

Güder A, Korkmaz H. Evaluation of In-Vitro Antioxidant Properties of Hydroalcoholic Solution Extracts Urtica Dioica L., Malva Neglecta Wallr. and Their Mixture. Iran J Pharm Res. 2012; 11 (3): 913. https://pubmed.ncbi.nlm.nih.gov/24250519