دراسة الخصائص غير الخطي ة (قابلية الاستقطاب المفرط الأول والثاني) لجزيء نيترو ثينو [3،2-ب] ثيوفين-فوليرين (C20)

محتوى المقالة الرئيسي

Samira Resan
https://orcid.org/0000-0003-4214-1314
Mohanned Al-Anber Al-Anber
https://orcid.org/0000-0001-9093-6811

الملخص

في هذه الدراسة، تم فحص الخصائص البصرية غير الخطية (NLO) لجزيء نيترو-ثينو [3،2-ب] ثيوفين-فوليرين (C20) بشكل منهجي باستخدام طرق نظرية الكثافة الوظيفية (DFT) على مستوىB3LYP مع مجموعة الأساس 6-31+G(d,p). يرتبط الفوليرين (المتبرع بالإلكترون) مع ثينو [3،2-ب] ثيوفين (π- جسر مترافق)، مما يشكل إطارًا لنقل الشحنة، والنيترو هو متقبل قوي للإلكترون. تمت دراسة الخصائص الديناميكية للجزيء، بما في ذلك فرط الاستقطاب الأول والثاني، مما أدى إلى التوليد التوافقي الثاني β(-2ω; ω,ω) والتوليد التوافقي الثالث γ(– 2ω; ω, ω, ω)، وتأثير β(-ω; ω,0)Pockels، وتأثيرKerr γ(–ω; ω, 0, 0), هي فهارس تقييم مهمة لإنشاء مواد لاخطية. يُظهر الجزيء استجابات لاخطية ممتازة، وهي فهارس تقييم مهمة لإنشاء مواد لاخطية. حيث وجد أن أعلى استجابة خطية للمعلمات أعلاه عند الطول الموجي 455.6 نانومتر. تكشف أطياف الامتصاص أن هذه الجزيئات لها مناطق شفافة تحت الحمراء وجزيئات لاخطية جديدة. لذلك، فإن ربط nitro-thieno [3،2-b] ثيوفين بالفوليرين (C20) هو طريقة فعالة لتصميم جزيئات لاخطية عالية الأداء.

تفاصيل المقالة

كيفية الاقتباس
1.
دراسة الخصائص غير الخطي ة (قابلية الاستقطاب المفرط الأول والثاني) لجزيء نيترو ثينو [3،2-ب] ثيوفين-فوليرين (C20). Baghdad Sci.J [انترنت]. 1 يونيو، 2024 [وثق 22 يناير، 2025];21(6):2146. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8659
القسم
article

كيفية الاقتباس

1.
دراسة الخصائص غير الخطي ة (قابلية الاستقطاب المفرط الأول والثاني) لجزيء نيترو ثينو [3،2-ب] ثيوفين-فوليرين (C20). Baghdad Sci.J [انترنت]. 1 يونيو، 2024 [وثق 22 يناير، 2025];21(6):2146. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8659

المراجع

Mohbiya DR, Sekar N. Electronic structure and spectral properties of indole based fluorescent styryl dyes: Comprehensive study on linear and non-linear optical properties by DFT/TDDFT method. Comput Theor Chem. 2018; 1139(April): 90–101. https://dx.doi.org/10.1016/j.comptc.

Kiven DE, Nkungli NK, Tasheh SN, Ghogomu JN. In silico screening of ethyl 4-[(E)-(2-hydroxy-4-methoxyphenyl) methyleneamino] benzoate and some of its derivatives for their NLO activities using DFT. R Soc Open Sci. 2023; 10(1): 220430. https://dx.doi.org/10.1098/rsos.220430

Bibi A, Muhammad S, UrRehman S, Bibi S, Bashir S, Ayub K, et al. Chemically Modified Quinoidal Oligothiophenes for Enhanced Linear and Third-Order Nonlinear Optical Properties. ACS Omega. 2021; 6(38): 24602–24613. https://dx.doi.org/10.1021/acsomega.1c03218

Chen X, Ok KM. Metal oxyhalides: an emerging family of nonlinear optical materials. Chem Sci. 2022;13(14): 3942–3956. https://dx.doi.org/10.1039/D1SC07121A

Li Q, Li Z. Molecular packing: another key point for the performance of organic and polymeric optoelectronic materials. Acc Chem Res. ACS Publications; 2020; 53(4): 962–973. https://dx.doi.org/10.1021/acs.accounts.0c00060

Wang H-Y, Ye J-T, Qiu Y-Q, Chen F. Toward the design of inorganic–organic hybrid Ir(III) complexes containing borazine and benzene ligands with excellent second-order NLO responses: An appropriate substitution and π-conjugated extension. J Mol Liq.121081. https://dx.doi.org/10.1016/j.molliq.2022.121081

Rasool F, Hussain A, Yar M, Ayub K, Sajid M, Ali M, et al. Nonlinear optical response of 9,10-bis(phenylethynyl)anthracene mediated by electron donating and electron withdrawing substituents: A density functional theory approach. Mat Sci Semicond. Process. 2022;148(May): 106751. https://dx.doi.org/10.1016/j.mssp.

Sulka GD. Electrochemistry of Thin Films and Nanostructured Materials. Molecules. 2023; 28(10), 4040. https://dx.doi.org/10.3390/molecules28104040

Butt A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings. 2022; 12(8), 1115. https://dx.doi.org/10.3390/coatings12081115

Derkowska-Zielinska B, Barwiolek M, Cassagne C, Boudebs G. Nonlinear optical study of Schiff bases using Z-scan technique. J Opt Laser Technol. 2020; 124: 105968. https://dx.doi.org/10.1016/j.optlastec.2019.105968

Pant D, Darla N, Sitha S. Roles of various bridges on intramolecular charge Transfers, dipole moments and first hyperpolarizabilities of Donor-Bridge-Acceptor types of organic Chromophores: Theoretical assessment using Two-State model. Comput. Theor. Chem. 2022;1209: 113583. https://dx.doi.org/10.1016/j.comptc.2021.113583

Li H-PP, Bi Z-TT, Xu R-FF, Han K, Li M-XX, Shen X-PP, et al. Theoretical study on electronic polarizability and second hyperpolarizability of hexagonal graphene quantum dots: Effects of size, substituent, and frequency. Carbon. 2017;122: 756–760. https://dx.doi.org/10.1016/j.carbon.2017.07.033

Singh P, Kumar A, Reena, Gupta A, Patil PS, Prabhu S, et al. Vibrational spectroscopic characterization, electronic absorption, optical nonlinearity computation and terahertz investigation of (2E) 3-(4-ethoxyphenyl)-1-(3-bromophenyl) prop-2-en-1-one for NLO device fabrication. J Mol Struct. 2019; 1198: 126909. https://dx.doi.org/10.1016/j.molstruc.2019.126909

Bahrani F,.Hameed R, Resan S, M Al-anber M. Impact of Torsion Angles to Tune Efficient Dye-Sensitized Solar Cell/Donor-π-Acceptor Model Containing Triphenylamine: DFT/TD-DFT Study. Acta Phys Pol A. 2022; 141(6): 561–568. https://dx.doi.org/10.12693/APhysPolA.141.561

Bulik IW, Zaleśny R, Bartkowiak W, Luis JM, Kirtman B, Scuseria GE, et al. Performance of density functional theory in computing nonresonant vibrational (hyper) polarizabilities. J Comput Chem. 2013; 34(20): 1775–1784. https://dx.doi.org/10.1002/jcc.23316

Resan S, Hameed R, Al-Hilo A, Al-Anber M. The impact of torsional angles to tune the nonlinear optical response of chalcone molecule: Quantum computational study. Rev Cub Fis. 2020; 37(2): 95–100. http://www.revistacubanadefisica.org/index.php/rcf/article/view/2020v37p095.

Kubba RM, Mohammed MA, Ahamed LS. DFT calculations and experimental study to inhibit carbon steel corrosion in saline solution by quinoline-2-one derivative. Baghdad Sci J. 2021; 18(1): 113–123. https://dx.doi.org/10.21123/bsj.2021.18.1.0113

Samanta PK, Misra R. Intramolecular charge transfer for optical applications. Appl. Phys. 2023;133(2). https://dx.doi.org/10.1063/5.0131426

Ahn M, Kim MJ, Cho DW, Wee KR. Electron Push-Pull Effects on Intramolecular Charge Transfer in Perylene-Based Donor-Acceptor Compounds. J. Org. Chem. 2021;86(1): 403–413. https://dx.doi.org/10.1021/acs.joc.0c02149

Huang Y, Zhou W, Li X, Jiang L, Song Y. Highly broadband NLO response of acceptor-donor-acceptor materials with a planar conformation. Mat Adv. 2021; 2(6): 2097–2103. https://dx.doi.org/10.1039/d0ma00918k

Shinde SS, Sreenath MC, Chitrambalam S, Joe IH, Sekar N. Spectroscopic, DFT and Z-scan approach to study linear and nonlinear optical properties of Disperse Red 277. Opt .Mater. 2020; 99(August): 109536. https://dx.doi.org/10.1016/j.optmat.2019.109536

Al-Anber MJ, Al-Mowali AH, Ali AM. Theoretical semiempirical study of the nitrone (anticancer drug) interaction with fullerene C60 (as delivery). Acta Phys Pol A .2014; 126(3): 845–848. https://dx.doi.org/10.12693/APhysPolA.126.845

Al-anber MJ. Theoretical Semi-empirical Study of the Glycine Molecule Interaction with Fullerene C60. Electron J Chem. 2014; 6(3): 156–160. http://www.orbital.ufms.br/index.php/Chemistry/article/view/491

24. Frisch M J, Trucks Gary, Schlegel H B, Scuseria G E, Robb Michael A, Cheeseman James R, et a ‘Gaussian 09, Revision A. 02. Gaussian Inc, Wallingford, CT.’ See also: URL: http://www.gaussian.com.2009;2009.

Halls MD, Velkovski J, Schlegel HB. Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theor Chem Acc. 2001; 105(6): 413–421. https://dx.doi.org/10.1007/s002140000204

Mathew E, Salian V V., Hubert Joe I, Narayana B, Joe IH, Narayana B. Third-order nonlinear optical studies of two novel chalcone derivatives using Z-scan technique and DFT method. J Opt Laser Technol. 2019; 120: 105697. https://dx.doi.org/10.1016/j.optlastec.2019.105697

Khalid M, Hussain R, Hussain A, Ali B, Jaleel F, Imran M, et al. Electron donor and acceptor influence on the nonlinear optical response of diacetylene-functionalized organic materials (DFOMs): Density functional theory calculations. Molecules . 2019;24(11). https://dx.doi.org/10.3390/molecules24112096

Kubba RM, Kadhim MM. Reactivity of O-Drug Bond in some Suggested Voltarine Carriers: Semiempirical and ab Initio Methods. Baghdad Sci J. 2021; 18(4): 1249. https://dx.doi.org/10.21123/bsj.2021.18.4.1249

Günay N, Tamer Ö, Avci D, Tarcan E, Atalay Y. Molecular modelling, spectroscopic characterization and nonlinear optical analysis on N-Acetyl-DL-methionine. Rev Mex de Fis. 2020; 66(6): 749–760. https://dx.doi.org/10.31349/revmexfis.66.749

Begam S, Deepa M, Ummal M, Hu J, Guin M. Effect of fluorination on bandgap, first and second order hyperpolarizabilities in lithium substituted adamantane: A time dependent density functional theory. Chem Phys Lett. 2019; 715: 310–316. https://dx.doi.org/10.1016/j.cplett.2018.11.034

Gorman CB, Marder SR. Effect of Molecular Polarization on Bond-Length Alternation, Linear Polarizability, First and Second Hyperpolarizability in Donor-Acceptor Polyenes as a Function of Chain Length. Chem Mater. 1995; 7(1): 215–220. https://dx.doi.org/10.1021/cm00049a033.

Li S, He M, Jin X, Geng W, Li C, Li X, et al. Extending the Stokes Shifts of Donor–Acceptor Fluorophores by Regulating the Donor Configuration for In Vivo Three-Photon Fluorescence Imaging. Chem Mater. 2022; 34(13): 5999–6008. https://dx.doi.org/10.1021/acs.chemmater.2c01025

Mbarak H, Kodeary AK, Hamidi SM, Mohajarani E, Zaatar Y. Control of nonlinear refractive index of AuNPs doped with nematic liquid crystal under external electric field. Optik. 2019; 198: 163299. https://dx.doi.org/10.1016/j.ijleo.2019.163299