نموذج الكشف عن الأخبار المزيفة استنادًا إلى خوارزميات التعلم الآلي
محتوى المقالة الرئيسي
الملخص
نظرًا للتطور السريع والهائل لشبكة الويب العالمية وسهولة الاتصال بالعالم الخارجي، فقد أصبح من السهولة إنشاء الأخبار ونشرها بشكل أسرع من أي فترة أخرى. نتيجة للاستخدام المتزايد للشبكات الاجتماعية، يقوم المستخدمون بإنتاج ونشر معلومات أكثر من أي وقت مضى، وبعضها واقع خاطئ وغير ذي صلة. من الصعب اكتشاف المعلومات الخاطئة أو المضللة تلقائيًا في المحتوى النصي. حتى المتخصص في الموضوع يجب أن يأخذ في الاعتبار عددًا من العناصر قبل تحديد مصداقية المقالة. المعلومات المضللة على وسائل التواصل الاجتماعي الكيدية والمنشورة عن قصد لها تأثير سلبي على المجتمعات والأشخاص، لا سيما في المواقف التي توجد فيها كوارث فعلية مثل الهجمات الإرهابية وأعمال الشغب والزلازل والفيضانات والحروب. لذلك من الأفضل التعرف على الشائعات في أسرع وقت ممكن للحد من آثارها السلبية على المجتمع. تهدف هذه الدراسة إلى بناء نموذج تعليمي للكشف عن الأخبار المزيفة. تعتمد هذه الورقة البحثية على البحث عن خصائص النص وتحليلها، ثم يتم تحويل الكلمات إلى ميزات باستخدام تقنية TF-IDF، وبعد ذلك يتم تحديد الميزات الأعلى مرتبة لغرض دراسة وتمييز انتشار الأخبار، سواء كان ذلك حقيقي أو مزيف باستخدام تقنيات التعلم الآلي. أخيرًا، تم تكييف خوارزمية الانحدار اللوجستي، وشجرة القرار، وتعزيز التدرج، وخوارزمية الغابة العشوائية. تبلغ دقة الانحدار اللوجستي (0.985)، والغابة العشوائية (0.989)، بينما تبلغ دقة شجرة القرار (0.994) وتعزيز التدرج (0.9949) على التوالي.
Received 07/03/2023
Revised 14/07/2023
Accepted 16/07/2023
Published Online First 20/01/2024
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Ahmad I, Yousaf M, Yousaf S, Ahmad MO. Fake News Detection Using Machine Learning Ensemble Methods. Complexity. 2020: 1-11. https://doi.org/10.1155/2020/8885861.
Awan MJ, Yasin A, Nobanee H, Ali AA, Shahzad Z, Nabeel M, et al. Fake news data exploration and analytics. Electron. 2021; 10, 19: 2326. https://doi.org/10.3390/ electronics10192326 .
Shu K, Sliva A, Wang S, Tang J, Liu H. Fake News Detection on Social Media. Int J Inf Secur. 2023; 22: 177–212. https://doi.org/10.1007/s10207-022-00625-3.
Khanam Z, Alwasel BN, Sirafi H, Rashid M. Fake News Detection Using Machine Learning Approaches. IOP Conf Ser Mater Sci Eng. 2021, 012040 IOP https://doi.org/10.1088/1757-899X/1099/1/012040
Ali I, Ayub MN Bin, Shivakumara P, Noor NFBM. Fake News Detection Techniques on Social Media: A Survey. Wirel Commun Mob Comput. 2022, Article ID 6072084,2022. https://doi.org/10.1155/2022/6072084 .
Haque S, Eberhart Z, Bansal A, McMillan C. The Future of Misinformation Detection: New Perspectives and Trends. IEEE Int Conf Progr Compr. 2022: 36–47. https://doi.org/10.48550/arXiv.1909.03654.
Kaur S, Kumar P, Kumaraguru P. Automating fake news detection system using multi-level voting model. Soft Comput. 2020; 24(12): 9049–69. https://doi.org/10.1007/s00500-019-04436-y
Dixit DK, Bhagat A, Dangi D. Automating fake news detection using PPCA and levy flight-based LSTM. Soft Comput. 2022; 26(22): 12545–57. https://doi.org/10.1007/s00500-022-07215-4
Nakamura K, Levy S, Wang WY. r/Fakeddit: A new multimodal benchmark dataset for fine-grained fake news detection. Lr 2020 - 12th Int Conf Lang Resour Eval Conf Proc. 2020; 6149–57.
Abdelminaam DS, Ismail FH, Taha M, Taha A, Houssein EH, Nabil A. CoAID-DEEP: An Optimized Intelligent Framework for Automated Detecting COVID-19 Misleading Information on Twitter. IEEE Access. 2021; 27840–67. https://doi.org/ 10.1109/ACCESS.2021.3058066
Ghadiri Z, Ranjbar M, Ghanbarnejad F, Raeisi S. Automated Fake News Detection using cross-checking with reliable sources. arXiv. 2021; 1–12. https://doi.org/10.48550/arXiv.2201.00083
Al-Ahmad B, Al-Zoubi AM, Ruba AK, Ibrahim A. An Evolutionary Fake News Detection Method for COVID-19. Symmetry (Basel). 2021; 1–16. https://doi.org/10.3390/sym13061091
Islam MR, Liu S, Wang X, Xu G. Deep learning for misinformation detection on online social networks: a survey and new perspectives. Soc Netw Anal Min. 2020; 10(1): 1–20. https://doi.org/10.1007/s13278-020-00696-x
Sharma S, Sharma DK. Fake News Detection: A long way to go. 2019 4th Int Conf Inf Syst Comput Netw, 2019; 816–21. https://doi.org/ 10.1109/ISCON47742.2019.9036221
Stitini O, Kaloun S, Bencharef O. Towards the Detection of Fake News on Social Networks Contributing to the Improvement of Trust and Transparency in Recommendation Systems: Trends and Challenges. Info. 2022; 13(3): 128. https://doi.org/10.3390/info13030128
Rastogi S, Bansal D. A review on fake news detection 3T’s: typology, time of detection, taxonomies. Int J Inf Secur . 2023; 22(1): 177–212. https://doi.org/10.1007/s10207-022-00625-3
Rani N, Das P, Bhardwaj AK. Rumor, misinformation among web: A contemporary review of rumor detection techniques during different web waves. Concurr Comput Pract Exp. 2022; 34(1): 1–21. https://doi.org/10.1002/cpe.6479
Ismael Kadhim A, Cheah Y-N, Abbas Hieder I, Ahmed Ali R. Improving TF-IDF with Singular Value Decomposition (SVD) for Feature Extraction on Twitter. Int Eng Conf. 2017; 144–52. https://doi.org/10.23918/iec2017.16
Wotaifi TA, Dhannoon BN. Improving Prediction of Arabic Fake News Using Fuzzy Logic and Modified Random Forest Model. Karbala Int J Mod Sci. 2022; 8(3): 477–85. https://doi.org/10.33640/2405-609x.3241
Das B, Chakraborty S. An Improved Text Sentiment Classification Model Using TF-IDF and Next Word Negation. arXiv. 2018; 1-6. https://doi.org/10.48550/arXiv.1806.06407
Utsha RS, Keya M, Hasan MA, Islam MS. Qword at CheckThat! 2021: An extreme gradient boosting approach for multiclass fake news detection. CEUR Workshop Procding. 2021; 2936: 619–27. CEUR.org.
Poręba J, Baranowski J. Functional Logistic Regression for Motor Fault Classification Using Acoustic Data in Frequency Domain. Energies. 2022; 15(15). https://doi.org/10.3390/en15155535
Boateng EY, Abaye DA. A Review of the Logistic Regression Model with Emphasis on Medical Research. J Data Anal Inf Process. 2019; 07(04): 190–207. https://doi.org/10.4236/jdaip.2019.74012
Sievering AW, Wohlmuth P, Geßler N, Gunawardene MA, Herrlinger K, Bein B, et al. Comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in-hospital events in COVID-19 patients on hospital admission. BMC Med Inform Decis Mak . 2022; 22(1): 1–14. https://doi.org/10.1186/s12911-022-02057-4
Ong AKS, Prasetyo YT, Yuduang N, Nadlifatin R, Persada SF, Robas KPE, et al. Utilization of Random Forest Classifier and Artificial Neural Network for Predicting Factors Influencing the Perceived Usability of COVID-19 Contact Tracing “MorChana” in Thailand. Int J Environ Res Public Health. 2022; 19(13): 1-28. https://doi.org/10.3390/ijerph19137979
Popuri SK. An Approximation Method for Fitted Random Forests. Arvxiv. 2022; 2207: 02184v1. https://doi.org/10.48550/arXiv.2207.02184
Lagrois D, Bonnell TR, Shukla A, Chion C. The Gradient-Boosting Method for Tackling High Computing Demand in Underwater Acoustic Propagation Modeling. J Mar Sci Eng. 2022; 10(7): 899, https://doi.org/10.3390/ jmse10070899
Adler AI, Painsky A. Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection. Entropy. 2022; 24(5): 687. https://doi.org/10.3390/ e24050687
Meshoul S, Batouche A, Shaiba H, AlBinali S. Explainable Multi-Class Classification Based on Integrative Feature Selection for Breast Cancer Subtyping. Math. 2022; 10(22). https://doi.org/10.3390/math10224271
Palaniappan M, Desingu K, Bharathi H, Chodisetty EA, Bhaskar A. Deep Learning and Gradient Boosting Ensembles for Classification of Snake Species. CEUR Workshop Procding. 2022; 3180: 2175–88.
Heydarian M, Doyle TE, Samavi R. MLCM: Multi-Label Confusion Matrix. IEEE Access. 2022; 10: 19083–95. https://doi.org/10.1109/ACCESS.2022.3151048
TAW, Dhannoon BN. An Effective Hybrid Deep Neural Network for Arabic Fake News Detection. Baghdad Sci J. 2023; 20(2) https://dx.doi.org/10.21123/bsj.2023.7427
Al-Shareeda, M.A.; Manickam, S. Man-in-the-Middle Attacks in Mobile Ad Hoc Networks (MANETs): Analysis and Evaluation. Symmetry 2022; 14: 1543. https://doi.org/10.3390/sym14081543
Baidea A Mohammed, Selvakumar Manickam, Zeyad Ghaleb, Abdulrahman Alreshaid, Meshari Alazam, Jalwal Sulaimani, et al. FC-PA: Fog Computing-Based Pseudonym Authentication Scheme in 5G-Enabled Vehicular Networks. IEEE Access. 2023. 11: 3-12. 18571-18581. https://doi.org/10.1109/ACCESS.2023.3247222
Taha MA, Ahmed HM. A fuzzy vault development based on iris images. EUREKA Phys Eng g. 2021; 5: 3-12. https://doi.org/10.21303/2461-4262.2021.001997.
Saha S, Dasgupta S, Anam A, Saha R, Nath S, Dutta S. An Investigation of Suicidal Ideation from Social Media Using Machine Learning Approach. Baghdad Sci J. 2023; 20(3(Suppl.) :1164. https://doi.org/10.21123/bsj.2023.8515
Kareem AK, AL-Ani MM, Nafea AA. Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network. Baghdad Sci J. 2023; 20(3(Suppl.): 1182. https://doi.org/10.21123/bsj.2023.8564