تأثير الكرافين واوكسيد الحديدوزعلى كفاءة طلاء البوليوجينول للفولاذ المقاوم للصدأ في محلول كلوريد الصوديوم

المؤلفون

  • ايات منذر القدسي قسم الكيمياء، كلية العلوم، جامعة بغداد ، بغداد، العراق. https://orcid.org/0000-0003-3557-7822
  • خلود عبد صالح قسم الكيمياء، كلية العلوم، جامعة بغداد ، بغداد، العراق.

DOI:

https://doi.org/10.21123/bsj.2024.8876

الكلمات المفتاحية:

يوجينول ,التأكل , بلمرة كهربائية ,مركبات نانوية ,بولي يجينول.

الملخص

التآكل هو مصطلح يطلق على عملية تفكك سطح المعادن والسبائك في بيئة معينة. تتغير الخواص الكيميائية للسبائك المعدنية بعد عملية التأكل وكذلك سلوكها الميكانيكي. لغرض الحماية من التأكل تم تطبيق إستراتيجية جديدة تعتمد على تخليق مادة بوليميرية من خلال البلمرة الكهربائية لليوجينول لتكوين للبولي يوجينول / المركب النانوي (Graphgene ، Fe3O4 )على الفولاذ المقاوم للصدأ نوع (SS316L)  ، والذي يربط كقطب كهربائي  انود ، باستخدام عملية البلمرة الكهربائية ، فإن البوليمر الموصل الناتج يعطي حماية جيدة ضد التآكل. تم اجراء الفحوصات المختبرية من التشخيص بتقنية الاشعة التحت الحمراء ومطيافية القوة الذرية للبوليمر المحضر لوحده مرة ومع المواد النانوية مرة اخرى. أظهرت النتائج أنه بالمقارنة مع SS316L الغير مطلي ، يوفر البولي يوجينول مع الكرافين أفضل حماية للمعدن المستخدم من التآكل.

المراجع

Tenorio-Alfonso A, Sánchez MC, Franco JM. A review of the sustainable approaches in the production of bio-based polyurethanes and their applications in the adhesive field. J Polym Environ. 2020; 28: 749-74. https://doi.org/10.1007/s10924-020-01659-1

Hamed I, Jakobsen AN, Lerfall J. Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Compr Rev Food Sci. 2022; 21(1): 198-226. https://doi.org/10.1111/1541-4337.12870.

Molina-Gutiérrez S, Ladmiral V, Bongiovanni R, Caillol S, Lacroix-Desmazes P. Emulsion polymerization of dihydroeugenol-, eugenol-, and isoeugenol-derived methacrylates. J Ind Eng Chem. 2019; 58(46): 21155-64. https://doi.org/10.1021/acs.iecr.9b02338.

Zhao Y, Nakanishi S, Hydroxylated and aminated polyaniline nanowire networks for improving anode performance in microbial fuel cells J Biosci Bioeng. 2011; 112(1) :63-6. https://doi.org/10.1016/j.jbiosc.2011.03.014

Gupta R, Singhal M, Nataraj SK, Srivastava DN. A potentiostatic approach of growing polyaniline nanofibers in fractal morphology by interfacial electropolymerization. . RSC Adv. 2016; 6(111): 110416-21, https://doi.org/10.1039/C6RA21759A

Heinze J, Frontana-Uribe BA, Ludwigs S. Electrochemistry of Conducting Polymers Persistent Models and New Concepts. Chem Rev. 2010; 110(8): 4724-71.https://doi.org/10.1021/cr900226k.

Das TK, Prusty S. Review on conducting polymers and their applications. Polym Plast Technol Eng. 2012; 51(14):1487-500 https://doi.org/10.1080/03602559.2012.751410

Cherdchom S, Keawsongsaeng W, Buasorn W, Rimsueb N, Development of Eugenol-Embedded Calcium Citrate Nanoparticles as a Local Anesthetic Agent. ACS omega. 2021; 6(43): 28880-28889.‏ https://doi.org/10.1021/acsomega.1c03831

Prasad S N. Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: behavioral and biochemical evidence. Neurochem. Res. 2013; 38(2): 330-345.‏ https://doi.org/10.1007/s11064-012-0924-9

Al-Mashhadani H A, Saleh K A . Electro-polymerization of poly Eugenol on Ti and Ti alloy dental implant treatment by micro arc oxidation using as Anti-corrosion and Anti-microbial. Res J Pharm Technol. 2020; 13(10): 4687-4696.‏ https://doi.org/10.1007/s11064-012-0924-9

Prasetya, NBA, Ajizan AI, Widodo DS, Ngadiwiyana N, Gunawan G. A polyeugenol/graphene composite with excellent anti-corrosion coating properties. Adv Mater Technol. 2023; 4(1): 248-255. https://doi.org/10.1039/D2MA00875K

Rahim E A, Istiqomah N, Almilda G, Ridhay A, Sumarni NK, Indriani I. Antibacterial and Antioxidant Activities of Polyeugenol with High Molecular Weight. Indones J Chem. 2022; 20(3): 722-728 https://doi.org/10.22146/ijc.44659.

Yakovenko O S, Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J Mater Sci.2017; 52(9): 5345-5358. https://doi.org/10.1007/s10853-017-0776-4

Contri G, Barra GM, Ramoa SD, Merlini C, Ecco LG, Souza FS, et al , Epoxy coating based on montmorillonite-polypyrrole: Electrical properties and prospective application on corrosion protection of steel. Prog Org Coat. 2018; 114: 201-207.‏ https://doi.org/10.1016/j.porgcoat.2017.10.008

Mohammed R, Saleh K. A novel conducting polyamic acid/nanocomposite coating for corrosion protection. Eurasian Chem Commun. 2021; 3: 715-725.‏ https://doi.org/10.22034/ECC.2021.296065.1206

Ayat MA, Khlood AS. Electrochemical Polymerization of Eugenol and Corrosion Protection Studies of Stainless Steel 304L Alloy. J Med Chem Sci. 2023; 6: 1818-1829. https://doi.org/10.26655/JMCHEMSCI.2023.8.10

Kubba R M, Mohammed M A, Ahamed L S. DFT Calculations and Experimental Study to Inhibit Carbon Steel Corrosion in Saline Solution by Quinoline-2-One Derivative. Baghdad Sci J. 2021; 18(1): 113-123 . https://doi.org/10.21123/bsj.2021.18.1.0113 .

Molaei M, Fattah-alhosseini A, Nouri M, Mahmoodi P, Navard S H, Nourian A . Enhancing cytocompatibility, antibacterial activity and corrosion resistance of PEO coatings on titanium using incorporated ZrO2 nanoparticles. Surf Interfaces, 2022; 30: 101967.‏ https://doi.org/10.1016/j.surfin.2022.101967.

Li Z, Yuan X, Sun M, Li Z, Zhang D, Lei Y, et al. Rhamnolipid as an eco-friendly corrosion inhibitor for microbiologically influenced corrosion. Corros Sci. 2022; 204: 110390. https://doi.org/10.1016/j.corsci.2022.110390.

Mohammed M A, Kubba R M. Experimental Evaluation for the Inhibition of Carbon Steel Corrosion in Salt and Acid Media by New Derivative of Quinolin-2-One. Iraqi J Sci. 2020; 61(8) : 1861-1873.‏ https://doi.org/10.24996/ijs.2020.61.8.2

‏ Jassim R A, Farhan A M, Ali A M. Corrosion protection study of carbon steel and 316 stainless steel alloys coated by nanoparticles. Baghdad Sci. J. 2014;11(1):116-122. https://doi.org/10.21123/bsj.2014.11.1.116-122.

Abu Hassan Shaari H, Ramli M M, Mohtar M N, Abdul Rahman N, Ahmad A. Synthesis and conductivity studies of poly (Methyl Methacrylate)(PMMA) by co-polymerization and blending with polyaniline (PANi). polymer. 2021; 13(12): 1939.‏

Kubo I, Fujita KI, Nihei KI. Antimicrobial activity of anethole and related compounds from aniseed. J Sci Food Agric. 2008; 88(2): 242-7. https://doi.org/10.1002/jsfa.3079

Farag Z R, Moustapha M E, Abd El-Hafeez G M . The inhibition tendencies of novel hydrazide derivatives on the corrosion behavior of mild steel in hydrochloric acid solution. J Mater Res Technol. 2022; 16: 1422-1434.‏ https://doi.org/10.1016/j.jmrt.2021.12.035.

Iman M M. Experimental and Quantum Chemical Studies on the Corrosion Inhibition of Mild Steel By 2-((Thiophen-2-Ylmethylene) Amino) Benzenethio in 1M HCl. Baghdad Sci J. 2019: 16(1): 49-55. https://doi.org/10.21123/bsj.2019.16.1.0049.

Abdulridha AA, Allah MA, Makki SQ, Sert Y, Salman HE, Balakit AA et al. Corrosion inhibition of carbon steel in 1 M H2SO4 using new Azo Schiff compound: electrochemical, gravimetric, adsorption, surface and DFT studies. J Mol Liq. 2020; 315: 113690.‏ https://doi.org/10.1016/j.molliq.2020.113690.

Jiang Y, Zheng W, Tran K, Kamilar E, Bariwal J, Ma H, et al. Hydrophilic nanoparticles that kill bacteria while sparing mammalian cells reveal the antibiotic role of nanostructures. Nat Commun. 2022; 197(13) : 1-17.‏ https://doi.org/10.1038/s41467-021-27193-9

Wang Y, Chen T, Wang H, Hu J, Ma Y, Wei J, et al. Corrosion inhibition effect of zeolitic imidazolate framework in chloride-contaminated cement pore solution under elevated temperatures. Constr Build Mater. 2022; 342 : 128024.‏ https://doi.org/10.1016/j.conbuildmat.2022.128024.

Almashhadani HA, Alshujery MK, Khalil M, Kadhem MM, Khadom AA. Corrosion inhibition behavior of expired diclofenac Sodium drug for Al 6061 alloy in aqueous media: Electrochemical, morphological, and theoretical investigations. J Mol Liq. 2021; 343: 117656. https://doi.org/10.1016/j.molliq.2021.117656.‏

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
تأثير الكرافين واوكسيد الحديدوزعلى كفاءة طلاء البوليوجينول للفولاذ المقاوم للصدأ في محلول كلوريد الصوديوم. Baghdad Sci.J [انترنت]. [وثق 22 يوليو، 2024];21(11). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8876