التصنيف الالي لثلاث مراحل من مرض إعتام عدسة العين بالاعتماد على شبكة نثر المويجات
محتوى المقالة الرئيسي
الملخص
إعتام عدسة العين وهو مرض يصيب العين حيث يسبب تشوهًا بصريًا ويمكن أن تؤدي المرحلة المتأخرة من هذا المرض إلى العمى. ويعتبر مرضًا صامتًا يمكن أن يحدث دون ظهور الأعراض. لذلك ، فإن الطريقة الأكثر فاعلية للكشف عن إعتام عدسة العين هي من خلال الكشف الدقيق في الوقت المناسب لمنع الأذى والعمى والعمليات المكلفة. ان الغرض من هذه البحث هو اقتراح نظام آلي يعتمد على شبكة نثر المويجات التي تصنف المرضى إلى أربع فئات: إعتام عدسة العين المبكر وإعتام عدسة العين المتوسط وإعتام عدسة العين المتأخر وعدم إعتام عدسة العين باستخدام 512 صورة لقاعدة البيانات ODIR (212 شخص مصاب و300 شخص غير مصاب). الخطوة الأولى في هذه التقنية هي خطوة المعالجة المسبقة لصورة الشبكية التي كانت عبارة عن مرشح المتوسط ، والذي تم استخدامه لتقليل ضوضاء الصورة. ثم بعد ذلك استخدام طريقة معادلة الرسم البياني التكيفية محدودة التباين (CLAHE) لتحسين مستوى عينات الصورة. بعد ذلك ، يمكن استخراج الخصائص منخفضة التباين من بيانات الصورة باستخدام شبكة تشتت المويجات لاستخدامها في تطبيقات التعلم العميق. في هذه الشبكة ، يتم استخدام مرشحات تحجيم تمرير منخفض وموجات موجية محددة مسبقًا. كان متوسط دقة الطريقة المقترحة 100٪ لأربع فئات (غير مصاب، مبكر، متوسط، شديد). علما ان النتائج موعودة مقارنة مع أعمال أخرى مماثلة.
Received 25/04/2023
Revised 04/08/2023
Accepted 06/08/2023
Published Online First 20/02/2024
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
El Abbadi N, Al Saadi E. Blood Vessel Diameter Measurement on Retinal Image. J Comput Sci. 2014; 10 (5): 879-883. https://doi.org/10.3844/jcssp.2014.879.883
El Abbadi N, Al Saadi E. Improvement of Automatic Hemorrhages Detection Methods using Shapes Recognition. J Comput Sci. 2013; 9 (9): 1205-1210. https://doi.org/10.3844/jcssp.2013.1205.1210
Bushra A, Nur H, Nor H. A Comprehensive Review on Medical Image Steganography Based on LSB Technique and Potential Challenges. Baghdad Sci J. 2021; 18(2): 957-974. https://doi.org/10.21123/bsj.2021.18.2(Suppl.).0957
Mosa Z, Ghae N, Ali A. Detecting Kkeratoconus by using SVM and Decision Tree Classifiers with the Aid of Image Processing. Baghdad Sci J. 2019; 16(4): 1022–1029. https://doi.org/10.21123/bsj.2019.16.4(Suppl.).1022
Mona N. Automated Cataract Grading using Smartphone Images. Ontario. Canada: Waterloo University Press; 2020.
Behnam A, Peter H, Jo W. Detecting Cataract Using Smartphones. IEEE J Transl Eng Health Med. 2021; 9(3800110): 1-10.
Aditya K, Jai K, Hetal M, Winfried A. Cataract surgery in diabetes mellitus: A systematic review. Indian J Ophthalmol. 2018 Oct; 66(10): 1401–1410. https://doi.org/10.4103/ijo.IJO_1158_17
Heidari M, Mirniaharikandehei S, Khuzani A, Danala G, Qiu Y, Zheng B. Improving the Performance of CNN to Predict the Likelihood of COVID-19 using Chest X-ray Images with Preprocessing Algorithms. Int J Med Inform. 2020; 144 (104284): 1-9. https://doi.org/10.1016/j.ijmedinf.2020.104284
Ki S, Jongwoo K, Eunseok K, Si L, Min-Ji K, Jisang H. Deep Learning-Based Cataract Detection and Grading from Slit-Lamp and Retro-Illumination Photographs: Model Development and Validatio Study. Ophthalmol Sci. 2022 June; 2 (2): 1-9. https://doi.org/10.1016/j.xops.2022.100147
Turimerla P, Priyanka K. Computer-aided Diagnosis of Cataract using Deep Transfer Learning. Biomed Signal Process Control. 2019 Aug; 53(5): 101533. https://doi.org/10.1016/j.bspc.2019.04.010
Jing W, Liu Y, Zhanqiang H, Weifeng H, Junwei L. Multi-Label Classification of Fundus Images With EfficientNet. IEEE Access. 2020; 8 (20163157): 212499–212508. https://doi.org/10.1109/ACCESS.2020.3040275
Jayachitra S, Kanna K, Pavithra G, Ranjeetha T. A Novel Eye Cataract Diagnosis and Classification Using Deep Neural Network. J Phys Conf Ser. 2021;1937(1):1-6. https://doi.org/10.1088/1742-6596/1937/1/012053
Junayed M, Islam M, Sadeghzadeh A, Rahman S. CataractNet: An Automated Cataract Detection System Using Deep Learning for Fundus Images. IEEE Access. 2021; 9(21100618): 128799-128808. https://doi.org/10.1109/ACCESS.2021.3112938
Kamrul H, Tanjum T, Ruhul A, Omar F, Mohammad M, Sultan A, et al. Cataract Disease Detection by Using Transfer Learning-Based Intelligent Methods. Comput Math Methods Med. 2021; 2021 (7666365): 1-11. https://doi.org/10.1155/2021/7666365
Hind H, Ali Y, Enas H. Classifying Three Stages of Cataract Disease using CNN. J Univ Babylon Pure Appl Sci. 2022; 30(3): 150-167.
Richard B, Yunendah F, Rita M, Sofia S, Abel B, Ibnu D. Cataract Classification Based on Fundus Images Using Convolutional Neural Network. Int J Inform Vis. 2022 Mar; 6(1): 33-38. https://doi.org/10.30630/joiv.6.1.856
Yaroub E. Cataract grading method based on deep convolutional neural networks and stacking ensemble learning. Int J Imaging Syst Technol. 2022; 32 (3): 798-814.
Bruna J, Mallat S. Invariant Scattering Convolution Networks. IEEE Trans Pattern Anal Mach Intell. 2013; 35(8): 1872-1886. https://doi.org/10.1109/TPAMI.2012.230
And´en J, Mallat S. Deep Scattering Spectrum. IEEE Trans Signal Process. 2014; 62(16): 4114–4128. https://doi.org/10.1109/TSP.2014.2326991