المقارنة بين الأكسدة بتقنية البلازما الباردة والدمج بين تقنية البلازما مع بيروكسيد الهيدروجين للمركبات الكبريتية العضوية

المؤلفون

DOI:

https://doi.org/10.21123/bsj.2024.9016

الكلمات المفتاحية:

.نزع الكبريت بيروكسيد الهيدروجين, الاكسدة ,البلازما , الكبريت

الملخص

تتضمن إزالة الكبريت إزالة مركبات الكبريت العضوية من زيوت الوقود. في هذه الدراسة، تم استخدام تقنية البلازما اللاحرارية وتقنية البلازما بمساعدة بيروكسيد الهيدروجين لاكسدة الوقود المحتوي على مركبات من benzothiophene و dibenzothiophene.

 تم إجراء تفاعل الأكسدة باستخدام منظومة dielectric barrier discharge لتوليد بلازما غير حرارية. النتائج أظهرت ان تقنية البلازما ومزيج من البلازما مع بيروكسيد الهيدروجين معًا لأكسدة BT و DBT. تتبعان  pseudo-first-order reaction  وأن كفاءة الإزالة للبلازما 93.78٪ مقارنة مع مزيج البلازما وبيروكسيد الهيدروجين معًا والتي بلغت 95.12٪. هذا الاختلاف في الكفاءة لا يشكل فارقا اذا ما اخذ بنظر الاعتبار  الناحية الاقتصادية (استهلاك المواد الكيميائية) ، حيث يمكن الاكتفاء بتقنية البلازما.

المراجع

Hai T, Hikmat Hama Aziz K, Zhou J, Dhahad HA, Sharma K, Fahad Almojil S .Neural network based optimization of hydrogen fuel production energy system with proton exchange electrolyzer supported nanomaterial. Fuel. 2023; 332: 125827. https://doi.org/10.1016/j.fuel.2022.125827.

Halim A, Mohammed AK, Hussein HK, Naife TM. Comparative Study of New Re-Ni-Mo/Al 2 o 3 and Conventional Hydrodesulfurization Catalyst. Iraqi J Chem Pet Eng. 2015;16(4):1–9. https://doi.org/10.31699/IJCPE.2015.4.1.

Chandran D, Khalid M, Walvekar R, Mubarak NM, Dharaskar S, Wong WY. Deep eutectic solvents for extraction-desulphurization: A review. J Mol Liq. 2019; 275: 312–322. https://doi.org/10.1016/J.MOLLIQ.2018.11.051.

Wang F, Harindintwali JD, Yuan Z, Wang M, Wang F, Li S, et al. Technologies and perspectives for achieving carbon neutrality. The Innovation. 2021;2(4): 100180. https://doi.org/10.1016/J.XINN.2021.100180.

Yahya MM, Hussein HQ. Adsorption Desulfurization Of Iraqi Heavy Naphtha Using Zeolite 13x. JAARU. 2019; 26(2): 12–18. https://doi.org/10.33261/jaaru.2019.26.2.003.

Kaluža L, Palcheva R, Jirátová K, Tyuliev G, Gulková D, Dimitrov L, et al. Characterization and HDS activity of Mo and NiMo sulfide catalyst prepared by thioglycolic acid assisted hydro thermal deposition method. J Alloys Compd. 2022; 903: 163925. https://doi.org/10.1016/j.jallcom.2022.163925.

Abdul-Halim AK, Abdul-Monaem AK, Hiadar AA. Kinetic Studies of Hydrodesulfurization of Vacuum Distillate. Iraqi J Chem Pet Eng. 2009; 10(1): 53–57. https://doi.org/10.31699/IJCPE.2009.1.8

Ahmed DJ, Al-Abdaly BI, Hussein SJ. Synthesis and Characterization of New nano catalyst Mo-Ni /TiO2- γAl2O3 for Hydro desulphurization of Iraqi Gas Oil. Baghdad Sci J. 2021; 18(4): 1557–1567. https://doi.org/10.21123/bsj.2021.18.4(Suppl.).1557.

Alyassiry AA, Alrubaye RTA. Desulfurization of model gasoline using metal-organic frame-work. AIP Conf Proc. 2020; 2213(1): 020090. https://doi.org/10.1063/5.0000242.

Mousa HJ, Hussein HQ. Adsorptive Desulfurization of Iraqi Heavy Naphtha Using Different Metals over Nano Y Zeolite on Carbon Nanotube. Iraqi J Chem Pet Eng. 2020; 21(1): 23–31. https://doi.org/10.31699/ijcpe.2020.1.4.

Saleh TA. Characterization, determination and elimination technologies for sulfur from petroleum: Toward cleaner fuel and a safe environment. Trends Environ Anal Chem. 2020; 25: e00080 https://doi.org/10.1016/j.teac.2020.e00080.

Ahmed GS, Humadi JI, Aabid AA. Mathematical Model, Simulation and Scale up of Batch Reactor Used in Oxidative Desulfurization of Kerosene. Iraqi J Chem Pet Eng. 2021; 22(3): 11–17. https://doi.org/10.31699/ijcpe.2021.3.2.

Dalya J, Basim I, Sattar J. Synthesis and Characterization of New nano catalyst Mo-Ni /TiO2-γAl2O3for Hydrodesulphurization of Iraqi Gas Oil. Baghdad Sci. J. 2021, 18(4): 1557-1567. https://dx.doi.org/10.21123/bsj.2021.18.4(Suppl.).1557 .

Hossain MN, Park HC, Choi HS. A Comprehensive Review on Catalytic Oxidative Desulfurization of Liquid Fuel Oil. Catalysts. 2019; 9(3): 229. https://doi.org/10.3390/CATAL9030229.

Mundher Y, Hussein HQ, Al-Tabbakh BA. Synthesis and Characterization of (TBAPW11O39) Hybrid Keggin Type Catalyst. AIP Conf Proc. 2022; 2660(1): 020092 https://doi.org/10.1063/5.0107720.

Ahmed BS, Hamasalih LO, Hama Aziz KH, Omer KM, Shafiq I. Oxidative Desulfurization of Real High-Sulfur Diesel Using Dicarboxylic Acid/H2O2 System. Processes. 2022; 10(11): 2327. https://doi.org/10.3390/PR10112327.

Ban A, Mustafa H, Ali I, Waleed I. A Competitive Study Using UV and Ozone with H2O2in Treatment of Oily Wastewater. Baghdad Sci J. 2020, 17(4): 1177-1182. http://dx.doi.org/10.21123/bsj.2020.17.4.1177

Alwan HH, Ali AA, Makki HF. Optimization of oxidative desulfurization reaction with Fe2O3 catalyst supported on graphene using box-behnken experimental method. Bull Chem React. 2020; 15(1): 175–185. https://doi.org/10.9767/BCREC.15.1.6670.175-185

Ugal JR, Hussein AH. Preparation and Characterization of Bimetallic Catalyst (NiO – CoO) for Desulfurization of Gas Oil. Baghdad Sci J. 2016; 13(2s(Supplement)): 0075–0075. The 2ndNational Conference of Chemistry. https://doi.org/10.21123/BSJ.2016.13.2.2NCC.0075

Liu WY, Lei ZL, Wang JK. Kinetics and mechanism of plasma oxidative desulfurization in liquid phase. Energy Fuels, 2001; 15(1): 38–43. https://doi.org/10.1021/ef000039p

Abdullah GH, Xing Y. Oxidation of Dibenzothiophene in Diesel with in Situ Produced Hydrogen Peroxide. Energy Fuels. 2018; 32(8): 8254–8258. https://doi.org/10.1021/acs.energyfuels.8b01630

Wang GJ, Zhang JK, Liu Y. Catalytic oxidative desulfurization of benzothiophene with hydrogen peroxide over Fe/AC in a biphasic model diesel-acetonitrile system. Korean J Chem Eng. 2013; 30(8): 1559–1565. https://doi.org/10.1007/S11814-013-0052-5.

Chen Y, Tian Q, Tian Y, Cui J, Wang G. Ultra-Deep Oxidative Desulfurization of Fuel with H2O2 Catalyzed by Mesoporous Silica-Supported Molybdenum Oxide Modified by Ce. Appl Sci. 2021; 11(5): 2018. https://doi.org/10.3390/app11052018.

Li L, Lu Y, Meng H, Li C. Lipophilicity of amphiphilic phosphotungstates matters in catalytic oxidative desulfurization of oil by H2O2. Fuel. 2019; 253: 802–810. https://doi.org/10.1016/j.fuel.2019.05.082.

Kayedi N, Samimi A, Asgari Bajgirani M, Bozorgian A. Enhanced oxidative desulfurization of model fuel: A comprehensive experimental study. S Afr J Chem Eng. 2021; 35: 153–158. https://doi.org/10.1016/J.SAJCE.2020.09.001.

Choi AES, Roces S, Dugos N, Wan MW. Oxidation by H2O2 of benzothiophene and dibenzothiophene over different polyoxometalate catalysts in the frame of ultrasound and mixing assisted oxidative desulfurization. FUEL. 2016; 180: 127–136. https://doi.org/10.1016/J.FUEL.2016.04.014

Alwan HH. Oxidative desulfurization of a model fuel using MoO3 nanoparticles supported on carbon nanotubes catalyst: Examine most significance variables, optimization, kinetics and thermodynamics study. S Afr J Chem Eng. 2022; 40: 230–239. https://doi.org/10.1016/j.sajce.2022.03.002

Lu MC, Biel LCC, Wan MW, De Leon R, Arco S. The Oxidative Desulfurization of Fuels with a Transition Metal Catalyst: A Comparative Assessment of Different Mixing Techniques. Int J Green Energy. 2014; 11(8): 833–848. https://doi.org/10.1080/15435075.2013.830260

Akopyan A V., Shlenova AO, Polikarpova PD, Vutolkina A V. High-Performance Heterogeneous Oxidative Desulfurization Catalyst with Bronsted Acid Sites. Pet Chem. 2022; 62(6): 636–642. https://doi.org/10.1134/S0965544122040053

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
المقارنة بين الأكسدة بتقنية البلازما الباردة والدمج بين تقنية البلازما مع بيروكسيد الهيدروجين للمركبات الكبريتية العضوية. Baghdad Sci.J [انترنت]. [وثق 21 مايو، 2024];21(10). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9016