استخدام الكبريت -2.4-دينيتروفينيل هيدرازين كمادة معدلة لإنتاج خرسانة مفيدة جديدة
محتوى المقالة الرئيسي
الملخص
في هذا المسعى الاستقصائي ، تم تطوير نوع جديد من الخرسانة يشتمل على تعديل الكبريت -2.4-ثنائي نيتروفينيل هيدرازين ، وتم استكشاف خصائصه المتنوعة. تم إنتاج هذه الخرسانة المبتكرة عن طريق تعديل الكبريت -2.4-ثنائي نيتروفينيل هيدرازين ومجموعة من المكونات. تم تصنيع الكبريت -2،4-دينيتروفينيل هيدرازين المعدّل والذي تم إنشاؤه حديثًا . تم فحص نسيج السطح الناتج باستخدام تقنيات SEM و .EDS تم احتساب نسب المكونات و الصفات الخرسانية والكيميائية والفيزيائية المشتقة من الكبريت -2.4-ثنائي نيتروفينيل هيدرازين المعدل ، المقاومة الكيميائية ومقاومة التآكل للخرسانة ، ثبات الخرسانة ضد امتصاص الماء ، مقاومة الخرسانة ضد التجمد ، الخصائص الفيزيائية والميكانيكية ، المتانة ، معامل المرونة ، وتم تقييم معامل التمدد الحراري للخرسانة المشبعة بالكبريت. أثبتت النتائج أن قيمة معامل التمدد الحراري للخرسانة المعدلة للكبريت -2.4-دينيتروفينيل هيدرازين كانت 14.8 × 10-6.0 درجة مئوية. كان متوسط التشوه للخرسانة التي تم تحليلها 0.0026-0.0051 ، مما يشير إلى أداء تشوه متفوق مقارنة بالخرسانة التقليدية. أظهرت الخرسانة ذات الأحجام التراكمية الأصغر كثافة أكبر، 2283 كجم / م 3. تناقصت كثافة الخرسانة تدريجياً مع زيادة حجم الركام. كان ثبات الخرسانة المعدلة الكبريت -2 ، 4-دينيتروفينيل هيدرازين مرتفعًا بشكل ملحوظ في مختلف البيئات غير المناسبة . كشف تحليل EDS أن ذرات الكربون شكلت 56.63٪ من الكتلة الكلية ، بينما شكل الكبريت 33.91٪ من الكتلة الكلية. أظهرت نتائج SEM التي تم الحصول عليها أن معدل الكبريت -2.4-ثنائي نيتروفينيل هيدرازين أظهر بنية مسامية أكثر ، خالية من التكوينات البلورية. شهد تعديل الكبريت -2 ، 4-دينيتروفينيل هيدرازين خسارة الكتلة الحرارية على مرحلة واحدة ، مع فقدان الكتلة التي تكون ماصة للحرارة بطبيعتها. تحققت نتائج الأشعة تحت الحمراء من وجود مجموعات وظيفية أمينية (حلقة ميلامين متصلة) وإنشاء سلاسل كبريت بوليمر.
Received 08/05/2023
Revised 07/07/2023
Accepted 09/07/2023
تفاصيل المقالة
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.
كيفية الاقتباس
المراجع
Dehestani M, Teimortashlu E, Molaei M, Ghomian M, Firoozi S, et al. Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen. Data Brief. 2017; 13: 137-144. https://doi.org/10.1016/j.dib.2017.05.030
Dugarte M, Martinez-Arguelles G, Torres J. Experimental evaluation of modified sulfur concrete for achieving sustainability in industry applications. Sustainability. 2018; 11(1): 70. https://doi.org/10.3390/su11010070
El Gamal M, El-Sawy K, Mohamed A-MO. Integrated mixing machine for sulfur concrete production. Case Stud Constr Mater. 2021; 14: e00495. https://doi.org/10.1016/j.cscm.2021.e00495
El Gamal MM, El-Dieb AS, Mohamed A-MO, El Sawy KM, Performance of modified sulfur concrete exposed to actual sewerage environment with variable temperature, humidity and gases. J Build Eng. 2017; 11:1-8. https://doi.org/10.1016/j.jobe.2017.03.009
Erofeev V, Yausheva L, Bulgakov A, Bobryshev A, Shafigullin L, Afonin, V. In Chemical resistance of sulfur concrete, AIP Adv . 2023; 13(6): 060021. https://doi.org/10.1063/5.0118294
Erofeev V, Yusupova A, Bobrishev A. In Activation of sulfur and opal-cristobalite-tridymite phase in sulfur concrete technology, IOP Conf Ser Mater Sci Eng 2018; 342: 042033. https://doi.org/10.1088/1757-899X/463/4/042033
Ghasemi S, Nikudel MR, Zalooli A, Khamehchiyan M, Alizadeh A, Yousefvand F, et al. Durability assessment of sulfur concrete and Portland concrete in laboratory conditions and marine environments. J Mater Civil Eng 2022; 34(8): 04022167. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004320
Gladkikh V, Korolev E, Husid D, Sukhachev I. In Properties of sulfur-extended asphalt concrete, EPJ Web Conf. 2016; 110: 04024. https://doi.org/10.1051/matecconf/20168604024
Grabowski Ł, Gliniak M, Polek D. In Possibilities of use of waste sulfur for the production of technical concrete, EPJ Web Conf. 2017; 143: 01032. https://doi.org/10.1051/e3sconf/20171801032
Gulzar MA, Rahim A, Ali B, Khan AH, An investigation on recycling potential of sulfur concrete. J Build Eng. 2021; 38: 102175.https://doi.org/10.1016/j.jobe.2021.102175
Gumeniuk A, Hela R, Polyanskikh I, Gordina A, Yakovlev G. In Durability of concrete with man-made thermoplastic sulfur additive, IOP Conf Ser Earth Environ Sci. 2020; 522: 032012. https://doi.org/10.1088/1757-899X/869/3/032012
Gutarowsk, B, Kotynia R, Bieliński D, Anyszka R, Wręczycki J, Piotrowska M, Koziróg A, et al. New sulfur organic polymer-concrete composites containing waste materials: Mechanical characteristics and resistance to biocorrosion. Materials. 2019; 12(16): 2602. https://doi.org/10.3390/ma12162602
Hasson S O, kadhem Salman SA, Hassan SF, Abbas SM. Antimicrobial Effect of Eco-Friendly Silver Nanoparticles Synthesis by Iraqi Date Palm (Phoenix dactylifera) on Gram-Negative Biofilm-Forming Bacteria. Baghdad Sci J. 2021; 18 (4): 1149-1156 http://dx.doi.org/10.21123/bsj.2021.18.4.1149
Rasheed MF, Rahim A, Irfan-ul-Hassan M, Ali B, Ali N. Sulfur concrete made with waste marble and slag powders: 100% recycled and waterless concrete. Environ Sci Pollut Res Int. 2022; 29(43): 65655-65669. https://doi.org/10.1007/s11356-022-20456-y
Zheng Y, Zhang Y, Zhuo J, Zhang P, Kong W. Mechanical properties and microstructure of nano-strengthened recycled aggregate concrete. Nanotechnol. Rev. 2022(1); 11(1): 1499-510. https://doi.org/10.1515/ntrev-2022-0077
Meng T, Wei H, Yang X, Zhang B, Zhang Y, Zhang C. Effect of mixed recycled aggregate on the mechanical strength and microstructure of concrete under different water cement ratios. Materials. 2021(18); 14(10): 2631. https://doi.org/10.3390/ma14102631
Sabour MR, Dezvareh GA, Niavol KP, Application of artificial intelligence methods in modeling corrosion of cement and sulfur concrete in sewer systems. Environ Process 2021; 8: 1601-1618. https://doi.org/10.1007/s40710-021-00542-y
Shahsavari MH, Karbala MM, Iranfar S, Vandeginste V. Martian and lunar sulfur concrete mechanical and chemical properties considering regolith ingredients and sublimation. Constr Build Mater 2022; 350: 128914. https://doi.org/10.1016/j.conbuildmat.2022.128914
Szajerski P, Bogobowicz A, Bem H, Gasiorowski A. Quantitative evaluation and leaching behavior of cobalt immobilized in sulfur polymer concrete composites based on lignite fly ash, slag and phosphogypsum. J Clean Prod 2019; 222: 90-102. https://doi.org/10.1016/j.jclepro.2019.03.010
Szajerski P, Bogobowicz A, Gasiorowski A. Cesium retention and release from sulfur polymer concrete matrix under normal and accidental conditions. J Hazard Mater 2020; 381: 121180. https://doi.org/10.1016/j.jhazmat.2019.121180
Al-Naemi AN, Abdul-Majeed MA, Al-Furaiji MH, Ghazi IN. Fabrication and characterization of nanofiber membranes using electrospinning technology for oil removal. Baghdad Sci J, 2021; 18(4): 1338-1343. http://dx.doi.org/10.21123/bsj.2021.18.4.1338
Cabral J S, Menegatti CR, Nicolodelli G. Laser-induced breakdown spectroscopy in cementitious materials: A chronological review of cement and concrete from the last 20 years. TrAC Trends Anal Chem. 2023;160: 116948. https://doi.org/10.1016/j.trac.2023.116948
Szajerski P, Celinska J, Gasiorowski A, Anyszka R, Walendziak R, Lewandowski M. Radiation induced strength enhancement of sulfur polymer concrete composites based on waste and residue fillers. J Clean Prod. 2020; 271: 122563. https://doi.org/10.1016/j.jclepro.2020.122563
Zhang J, Chen L, Lu Z, Zhang Y. A review on the application of recycled aggregates in concrete and cement-based materials. J Mater Res Technol, 2022; 13: 1-16. https://doi.org/10.1016/j.jmrt.2021.12.135
Zhu Z, Chu H, Guo MZ, Zeng Y, Li X, Yu X, et al. Antibacterial performance of electrodeposited Cu@ Cu2O coatings on concrete using printed circuit board wastewater. J Clean Prod, 2023; 383: 135373. https://doi.org/10.1016/j.jclepro.2022.135373
Yusupova A, Bobryshev AA, Treschev AA. Development of sulfur and silicon dioxide activation method in the sulfur concrete technology. Adv Mater Res. 2018; 284:1114-1118. https://doi.org/10.4028/www.scientific.net/SSP.284.1114
Yusupov AA, Khatsrinov AI, Akhmetova RT. Activating effect of aluminum chloride in the preparation of sulfur concrete from sulfur and silica. Inorg Mater. 2018: 54(8): 809-814. https://doi.org/10.1134/S0020168518080174
Jeyakaran T, Pornsiri N, Saengsoy W, Tangtermsirikul S. Test methods for performance-based evaluation of concrete containing iron sulfide-bearing aggregates: Development and application. Res Eng. 2023; 18: 101068. https://doi.org/10.1016/j.rineng.2023.101068
Le HT, Inozemtcev S, Korolev E, Grishina A. The efficiency of sulfur modifier to neutralize toxic gases in sulfur-asphalt concrete technology. IOP Conf Ser Mater Sci Eng. 2020; 869: 032016. https://doi.org/10.1088/1757-899X/869/3/032016
Lewandowski M, Kotynia R. Assessment of sulfur concrete properties for use in civil engineering. E3S Web Conf. 2018: 03006. https://doi.org/10.1051/matecconf/201821903006
Moon J, Kalb PD, Milian L, Northrup PA. Characterization of a sustainable sulfur polymer concrete using activated fillers. Cem Concr Compos. 2016; 67: 20-29. https://doi.org/10.1016/j.cemconcomp.2015.12.002
Kaladharan G, Rajabipour F. Evaluation and beneficiation of high sulfur and high alkali fly ashes for use as supplementary cementitious materials in concrete. Constr Build Mater. 2022; 339: 127672. https://doi.org/10.1016/j.conbuildmat.2022.127672
Amran M, Lesovik V, Tolstoy A, Fediuk R, Rusinov R, Rusinova N, et al. Properties and performance of polypropylene fibered high-strength concrete with an improved composite binders. Case Studies in Construction Materials. 2022; 17(11): 21. https://doi.org/10.1016/j.cscm.2022.e01621
Kholmirzayev S, Akhmedov I, Khamidov A, Umarov I, Dedakhanov F, Hakimov S. Use of sulfur concrete in reinforced concrete structures. Sci Innov. 2022; 1(A8): 985-990. https://doi.org/10.5281/zenodo.7445639
Gwon S, Ahn E, Shin M. Self-healing of modified sulfur composites with calcium sulfoaluminate cement and superabsorbent polymer. Compos Part B Eng. 2019; 162: 469-483. https://doi.org/10.1016/j.compositesb.2019.01.003
Gwon S, Ahn E, Shin M. Water permeability and rapid self-healing of sustainable sulfur composites using superabsorbent polymer and binary cement. Constr Build Mater. 2020; 265: 120306. https://doi.org/10.1016/j.conbuildmat.2020.120306
Hrdlička A, Hegrová J, Novotný K, Kanický V, Prochazka D, Novotný J, et al. Sulfur determination in concrete samples using laser-induced breakdown spectroscopy and limestone standards. Spectrochim Acta B. 2018; 142: 8-13. https://doi.org/10.1016/j.sab.2018.01.015
Yuan C, Sun J, Tian X, Yuan Y. Preparation of high-performance deproteinized natural rubber/chitosan composite films via a green and sulfur-free method. J Appl Polym Sci. 2023; 140(1): e53253. https://doi.org/10.1002/app.53253
Benjeddou O, Ravindran G, Abdelzaher MA. Thermal and acoustic features of lightweight concrete based on marble wastes and expanded perlite aggregate. Buildings. 2023; 13(4): 992. https://doi.org/10.3390/buildings13040992
Bao C, Wang Y, Mushtaq RT, Chen X, Liu Z, Li X, et al. Preparation and characterization of elevated and cryogenic temperature-resistant regolith-based epoxy resin composites. Constr Build Mater. 2023; 387: 131560. https://doi.org/10.1016/j.conbuildmat.2023.131560
Alcantara R, Blanca C, Rivera K, Serrano E. Review of sustainable concrete based on photocatalytic to reduce the environmental impact in large works in Peru. J Proj Manage. 2023; 8(2): 91-98. https://doi.org/10.1007/s11051-020-04913-8
Dobrosmyslov S S, Zadov VE, Nazirov RA, Nagibin GE, Voronin AS, Simunin MM. et al. High Strength Construction Material Based on Sulfur Binder Obtained by Physical Modification. Buildings. 2022; 12 (7): 1012. https://doi.org/10.3390/buildings12071012
Chen X.-F, Jiao C.-J. Effect of physical properties of construction wastes based composite photocatalysts on the sulfur dioxide degradation: Experimental investigation and mechanism analysis. Case Stud. Constr. Mater. 2022; 17: e01237. https://doi.org/10.1016/j.cscm.2022.e01237
Hu Z, Shi T, Cen M, Wang J, Zhao X, Zeng C, et al. Research progress on lunar and Martian concrete. Constr Build Mater. 2022; 343: 128117. https://doi.org/10.1016/j.conbuildmat.2022.128117
Xie R, Ge R, Li Z, Qu G, Zhang Y, Xu Y, et al. Synthesis and influencing factors of high-performance concrete based on copper tailings for efficient solidification of heavy metals. J Environ Manage. 2023; 325: 116469. https://doi.org/10.1016/j.jenvman.2022.116469
Araiza RC, Fournier B, Duchesne J, Rodrigues A. Electrochemical activation of oxidation of sulfide-bearing aggregates in concrete specimens. Cement Concr. Res. 2023; 170: 107186. https://doi.org/10.1016/j.cemconres.2023.107186
Jaymand M. Sulfur functionality-modified starches: Review of synthesis strategies, properties, and applications. Int J Biol Macromol. 2022; 197: 111-120. https://doi.org/10.1016/j.ijbiomac.2021.12.090
Eri SR, Hanif A. Analysis of Compressive Strength of Sulfur Concrete. Journal of Mechanical, J Mech Civ Ind Eng. 2022; 3 (2): 7-16. https://doi.org/10.32996/jmcie
Zhang Q, Zhang B, Wang D. Environmental benefit assessment of blended cement with modified granulated copper slag. Materials. 2022 (3); 15(15): 5359. https://doi.org/10.3390/ma15155359
Priyadarshi R, Khan A, Ezati P, Tammina SK, Priyadarshi S, Bhattacharya T, et al. Sulfur recycling into value-added materials: a review. Environ Chem Lett. 2023; 21: 1-27. https://doi.org/10.1007/s10311-023-01575-5
Guo L, Wang W, Zhong L, Guo Y. Research on the Performance of Titanium Gypsum Concrete Based on Calcium-Silicon-Sulfur Ratio. J Renew Mater. 2023; 11 (1): 423-434.https://doi.org/10.32604/jrm.2022.022942