تخليق ودراسات بيولوجية لمشتقات 4-مثيل-7-اثيل كومارين التي تحتوي على مجموعة الازو

المؤلفون

  • Muntather Hossam Kazem قسم الكيمياء، كلية العلوم، جامعة بغداد، بغداد، العراق و شركة نفط ميسان، ميسان، العراق. https://orcid.org/0009-0006-1090-9615
  • Luma S. Ahamed قسم الكيمياء، كلية العلوم، جامعة بغداد، بغداد، العراق. https://orcid.org/0000-0002-6482-6747

DOI:

https://doi.org/10.21123/bsj.2023.9143

الكلمات المفتاحية:

أمينو كومارين، النشاط المضاد للميكروبات، أصباغ الآزو، الكومارين، ملح الديازونيوم

الملخص

خلٌقت مشتقات الجديدة من4-methyl-7-ethylcoumarin  التي تحمل مجموعة azo من خلال سلسلة من التفاعلات المتسلسلة واختبار نشاطها البيولوجي. بدءًا من 7-اثيل-4-مثيل كومارين الذي حضٌر من تفاعل ميتا اثيل فينول مع اثيل اسيتو اسيتيت بواسطة تفاعل بكمان بعدها تم نيترة 7-اثيل-4-مثيل كومارين باستخدام حامض النيتريك بوجود  H2SO4المركز لإنتاج ايزومر واحد 7-اثيل-4-مثيل -8-نايتروكومارين  تحت التبريد في درجة حرار  Co (2-5) ، ثم اختزال مجموعة النيترو باستخدام معدن الحديد في وسط حامضي لتكوين امينو كومارين المقابل الذي حوٌل الى أصباغ azo عن طريق تفاعل ملح الديازونيوم الخاص به مع مركبات الفينول المختلفة. شخٌص المركبات المخلقة  بواسطة اطياف الماس و FT-IR   و 1HNMR و  , 13C-NMR والأشعة فوق البنفسجية وتقنية كروموتوكرافيا الطبقة الرقيقة. قيٌمت الفعالية البيولوجية للمركبات المخلقة تجاه نوعين من البكتريا كرام الموجبة والكرام السالبة بتركيز1× M10-3  اظهرت ان المركبات المخلقة الجديدة 4 و 6 تمتلك طيف عريض ضد البكتريا الموجبة والسالبة مقارنة مع الدواء المستخدم  كعقار vancomycinبينما كل المركبات اظهرت فعالية وسط تجاه الفطريات مقارنة مع العقار القياسي nystatin . كما اظهرت تلك المركبات المحضرة كمضادات أكسدة قوية جدًا مقارنة بحمض الأسكوربيك كمرجع قياسي .خاصة مركب رقم7 اظهر  كفاءة قوية كمضاد للأكسدة لنفس المرجع.

المراجع

Lončarić M, Gašo-Sokač D, Jokić S, Molnar M. Recent advances in the synthesis of coumarin derivatives from different starting materials. Biomol. 2020; 10(1): 151-186. https://doi.org/10.3390/biom10010151

Pavela R, Maggi F, Benelli G. Coumarin (2H-1-benzopyran-2-one): a novel and eco-friendly aphicide. Nat Prod Res. 2021; 35(9): 1566-1571. https://doi.org/10.3390/app13116535

Zang Y. Pharmacological activities of coumarin compounds in licorice: a review. Nat Prod Commun. 2020; 15(9): 1-17. https://doi.org/10.1177/1934578X20953954

Hadaček F, Müller C, Werner A, Greger H, Proksch P. Analysis, isolation and insecticidal activity of linear furanocoumarins and other coumarin derivatives from Peucedanum (Apiaceae: Apioideae). J Chem Ecol. 1994; 20(8): 2035-2054. https://doi.org/10.3390/molecules23051222

Gao L, Wang F, Chen Y, Li F, Han B, Liu D. The antithrombotic activity of natural and synthetic coumarins. Fitoterapia. 2021; 154: 104947-104964. https://doi.org/10.1016/j.fitote.2021.104947.

Jain P, Joshi H. Coumarin: Chemical and pharmacological profile. J Appl Pharm Sci. 2012; 2: 236-240. https://doi.org/10.3390/cancers12071959.

Omeonu FC, Jonathan SG, Salami AT, Laba SA, Azuh VO. Phytochemical Analysis and In-vitro Antioxidant Activities of Some Selected Higher Fungi from Oyo State, South West of Nigeria. Microbiol Res J Int. 2022; 32(5): 32-41. http://doi.org/10.9734/mrji/2022/v32i530389.

Lončar M, Jakovljević M, Šubarić D, Pavlić M, Buzjak Služek V, Cindrić I, et al. Coumarins in Food and Methods of Their Determination. Foods. 2020; 9(5): 645. https://doi.org/10.3390/foods9050645.

Karakaya S, Bingol Z, Koca M, Dagoglu S, Pınar NM, Demirci B, et al. Identification of non-alkaloid natural compounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with cholinesterase and carbonic anhydrase inhibition potential. Saudi Pharm J. 2020; 28(1): 1-14. http://dx.doi.org/10.1016/j.jsps.2019.11.001.

Rastija V, Vrandečić K, Ćosić J, Kanižai ŠG, Majić I, Karnaš M. Prospects of Computer-Aided Molecular Design of Coumarins as Ecotoxicologically Safe Plant Protection Agents. Appl Sci. 2023; 13: 6535. https://doi.org/10.3390/app13116535

Shu P, Li J, Fei Y, Zhu H , Yu M, Liu A.et al. Isolation, structure elucidation, tyrosinase inhibitory, and antioxidant evaluation of the constituents from Angelica dahurica roots. J Nat Med. 2020; 74: 456-462. https://doi.org/ 10.1007/s11418-019-01375-8.

Stéphanie H ,Gilbert K. A rapid Access to Coumarin Derivatives (Using Vilsmeier—Haack and Suzuki Cross-Coupling Reactions). Tetrahedron Lett. 2002; 43(7): 1213-1215. https://doi.org/10.1016/S0040-4039(01)02373-5

Oviedo-Sarmiento JS, Cortes JJB, Ávila WAD, Cuca Suárez LE, Daza EH, Patiño-Ladino OJ, et al. Fumigant toxicity and biochemical effects of selected essential oils toward the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Pestic Biochem Physiol. 2021; 179: 104941. http://doi.org/10.1016/j.pestbp.2021.104941.

Phadtare SB, Shankarling GS. Greener coumarin synthesis by Knoevenagel condensation using biodegradable choline chloride. Environ Chem Lett. 2012; 10: 363–368.http://doi.org/10.3390/biom10010151

Adimule VM, Nandi SS, Kerur SS, Khadapure SA, Chinnam S. Recent advances in the one-pot synthesis of coumarin derivatives from different starting materials using nanoparticles: A review. Top Catal. Published online 2022: 1-31. https://doi.org/10.1016/j.saa.2023.123210

Zeydi MM, Kalantarian SJ, Kazeminejad Z. Overview on developed synthesis procedures of coumarin heterocycles. J Iran Chem Soc .2020; 17: 3031–3094.https://doi.org/10.1016/j.saa.2023.123210

Wen Z, Yang K, Deng J, Chen L. Advancements in the Preparation of 4H‐Chromenes: An Overview. Adv Synth Catal. 2023; 365(9): 1290-1331. https://doi.org/10.1002/adsc.202201409

Nagaraja O, Bodke YD, Pushpavathi I, Ravi KS. Synthesis, characterization and biological investigations of potentially bioactive heterocyclic compounds containing 4-hydroxy coumarin. Heliyon. 2020; 6(6): e04245. https://doi.org/10.1016/j.heliyon.2020.e04245

Maliyappa MR, Keshavayya J, Mahanthappa M, Shivaraj Y, Basavarajappa K V. 6-Substituted benzothiazole based dispersed azo dyes having pyrazole moiety: synthesis, characterization, electrochemical and DFT studies. J Mol Struct. 2020; 1199: 126959.https://doi.org/10.1016/j.molstruc.2019.126959

Abdullah AF, Kadhim MM, Naser AW, WITHDRAWN: Novel azo compounds syntheses from sodium saccharin salt: Characterization and DFT studies. Mater Today: Proceedings. 2021. https://doi.org/10.1016/j.matpr.2021.04.522

‎Jha P, Modi N, Jobby R, Desai N. Differential Expression of Antioxidant Enzymes During Degradation of Azo Dye ‎Reactive black 8 in Hairy roots of Physalis minima L. Int J Phytoremediation. 2015; 17(1-6): 305-312. https://doi.org/10.1080/15226514.2013.876963

Nuruki Y, Matsumoto H, Tsukada M, Tsukahara H, Takajo T, Tsuchida K, et al. Method to Improve Azo-Compound (AAPH)-Induced Hemolysis of Erythrocytes for Assessing Antioxidant Activity of Lipophilic Compounds. Chem Pharm Bull (Tokyo). 2021; 69(1): 67-71. https://doi.org/10.1248/cpb.c20-00568

Sezgin B, Tilki T, Karabacak A Ç, Dede B. Comparative in vitro and DFT antioxidant studies of phenolic group substituted pyridine-based azo derivatives. J Biomol Struct Dyn. 2022; 40(11): 4921-4932. https://doi.org/10.1080/07391102.2020.1863264

Samad MK, Hawaiz FE. Synthesis, characterization, antioxidant power and acute toxicity of some new azo-benzamide and azo-imidazolone derivatives with in vivo and in vitro antimicrobial evaluation. Bioorg Chem. 2019 Apr; 85: 431-444. https://doi.org/10.1016/j.bioorg.2019.01.014

Nagasundaram N, Govindhan C, Sumitha S, Nagarajan S, Krishnan R. Sigamani S. et al. Synthesis, characterization and biological evaluation of novel azo fused 2, 3-dihydro-1H-perimidine derivatives: In vitro antibacterial, antibiofilm, anti-quorum sensing, DFT, in silico ADME and Molecular docking studies. J Mol Struct. 2022; 1248: 131437. https://doi.org/10.1016/j.molstruc.2021.131437

Di Martino M, Sessa L, Di Matteo M, Panunzi B, Piotto S, Concilio S. Azobenzene as Antimicrobial Molecules. Molecules. 2022 Sep 1; 27(17): 5643. https://doi.org/10.3390/molecules27175643

Kyei SK, Akaranta O, Darko G. Synthesis, characterization and antimicrobial activity of peanut skin extract-azo-compounds, Sci Afr. 2020; 8: e00406.https://doi.org/10.1016/j.sciaf.2020.e00406

Banaszak-Leonard E, Fayeulle A, Franche A, Sagadevan S , Billamboz M . Antimicrobial azo molecules: a review. J Iran Chem Soc. 2021; 18: 2829-2851. https://doi.org/10.3390/molecules27186060

Nagasundaram N, Govindhan C, Sumitha S, Nagarajan S, Krishnan R. Sigamani S. et al. Synthesis and anticancer activity of new azo compounds containing extended π-conjugated systems. Chem Pap. 2017; 71: 1463–1469. http://doi.org/10.1007/s11696-017-0140-9

Tahir T, Shahzad MI, Tabassum R, Rafiq M, Ashfaq M, Hassan M et al. Diaryl azo derivatives as anti-diabetic and antimicrobial agents: synthesis, in vitro, kinetic and docking studies. J Enzyme Inhib Med Chem. 2021; 36(1): 1509-1520.https://doi.org/10.1080/14756366.2021.1929949

Maliyappa MR, Keshavayya J. Cu (II), Co (II), Ni (II), Zn (II) and Cd (II) complexes of novel azo ligand 6-hydroxy-4 methyl-2 oxo-5-[(4, 5, 6, 7-tetrahydro-1, 3-benzothiazol-2-yl) diazenyl]-1, 2-dihydropyridine 3-carbonitrile as potential biological agents: synthesis and spectroscop. Chem Pap. 2022; 76(6): 3485-3498. http://doi.org/10.1007/s11696-022-02101-7

Rabbani MAD, Khalili B, Saeidian H. Novel edaravone-based azo dyes: efficient synthesis, characterization, antibacterial activity, DFT calculations and comprehensive investigation of the solvent effect on the absorption spectra. RSC Adv. 2020; 10(59): 35729-35739. https://doi.org/10.1039/D0RA06934E

Zeebaree SYS, Zeebaree AYS, Zebari OIH. Diagnosis of the multiple effect of selenium nanoparticles decorated by Asteriscus graveolens components in inhibiting HepG2 cell proliferation. Sustain Chem Pharm. 2020; 15: 100210. https://doi.org/10.1016/j.scp.2019.100210

Maliyappa M, Keshavayya J, Mallikarjuna N, Pushpavathi I. Novel substituted aniline based heterocyclic dispersed azo dyes coupling with 5-methyl-2-(6-methyl-1, 3-benzothiazol-2-yl)-2, 4-dihydro-3H-pyrazol-3-one: synthesis, structural, computational and biological studies. J Mol Struct. 2020; 1205: 127576. https://doi.org/10.1016/j.molstruc.2019.127576

Bisht B, Imandi V, Pant S, Sen A. Solvent-dependent spectral properties in diverse solvents, light harvesting and antiviral properties of Mono-azo Dye (Direct Yellow-27): A combined experimental and theoretical study. J Comput Biophys Chem. 2021; 20(06): 619-630.https://doi.org/10.1142/S2737416521500368

Abbas GJ, Mosaa Z, Radhi AJ, Abbas HK, Najem WM. Synthesis, studying analytical properties and biological activity of new transition metal complexes with sulfadiazine derivative as reagent. Egypt J Chem. 2023; 66(1): 55-61. http://doi.org/10.21608/EJCHEM.2022.104212.4814

Mallikarjuna NM, Keshavayya J. Synthesis, spectroscopic characterization and pharmacological studies on novel sulfamethaxazole based azo dyes. J King Saud Univ. 2020; 32(1): 251-259. https://doi.org/10.1016/j.jksus.2018.04.033

Ravi BN, Keshavayya J, Mallikarjuna NM, Santhosh HM. Synthesis, characterization, cyclic voltammetric and cytotoxic studies of azo dyes containing thiazole moiety. Chem Data Collect. 2020; 25: 100334. https://doi.org/10.1016/j.cdc.2019.100334

Ahamed LS. Synthesis of new five-membered hetrocyclic compounds from 2-furfuryl mercaptan derivative and evaluation of their biological activity

J. Glob. Pharma Technol. 2019; 10 (11): 298-304 http://www.jgpt.co.in/index.php/jgpt/article/view/1795

Aly AA, Sayed SM, Abdelhafez ESMN, Naguib SM, Abdelzaher WY, Raslan MA. et al. New quinoline-2-one/pyrazole derivatives; design, synthesis, molecular docking, anti-apoptotic evaluation, and caspase-3 inhibition assay. Bioorg Chem. 2020; 94: 103348. https://doi.org/10.1016/j.bioorg.2019.103348

Sahib HA, Hadi MK, Abdulkadir MQ. Synthesis, and Antimicrobial Evaluation of New hydrazone Derivatives of (2, 4-dinitrophenyl) hydrazine. Res J Pharm Technol. 2022; 15(4): 1743-1748. https://doi.org/10.1016/j.bmc.2014.07.022

Zhou D, Zhuang Y, Sheng Z. Study on effective synthesis of 7-hydroxy-4-substituted coumarins. Heterocycl. Commun. 2022; 28(1): 181-187.https://doi.org/10.1515/hc-2022-0154

Sahoo SS, Shukla S, Nandy S, Sahoo HB. Synthesis of novel coumarin derivatives and its biological evaluations Euro J Exp Bio. 2012; 2 (4): 899-908.https://doi.org/10.1016/j.ejmech.2021.113739

Nofal ZM, El-Zahar MI, Abd El-Karim SS. Novel Coumarin Derivatives with Expected Biological Activity. Molecules. 2000; 5(2): 99-113. https://doi.org/10.3390/50200099

Yazdanbakhsh R, Ghanadzadeh A, Moradi E. Synthesis of some new azo dyes derived from 4-hydroxy coumarin and spectrometric determination of their acidic dissociation constants, J Mol Liq. 2007; 136(1–2): 165-168. https://doi.org/10.1016/j.molliq.2007.03.005

Alsahib SA. Characterization and Biological Activity of Some New Derivatives Derived from Sulfamethoxazole Compound. Baghdad Sci J. 2020; 17(2): 471-480. https://doi.org/10.21123/bsj.2020.17.2.0471

Maged AS, Ahamed LS. Synthesis of new heterocyclic derivatives from 2-furyl methanethiol and study their applications. Eurasian Chem Commun. 2021; 3(7): 461-476. https://doi.org/10.22034/ecc.2021.279489.1158

Fenjan AM, Mahdi IS. Synthesis and Characterization of New Mannich Bases Derived from 7-hydroxy-4-methyl Coumarin. Baghdad Sci J. 2016; 13(2): 235-243.https://doi.org/10.21123/bsj.2016.13.2.2NCC.0235

Fzaa WT. Gamma Ray Effect on the Properties of Coumarin C47 Laser Dye. Baghdad Sci J. 2018; 15(3): 310-313. https://doi.org/10.21123/bsj.2018.15.3.0310

lsahib SA, Dhedan RM. Synthesis and Characterization of some Tetrazole Derivatives and Evaluation of their Biological Activity. E J Chem. 2021; 64(6): 2925-2936.https://doi.org/10.21608/EJCHEM.2021.54356.3165

Alkalidi RAA, Al-Tamimi EO, Al-Shammaree SA. Synthesis and Identification of New 2-Substituted-1, 3, 4- Oxadiazole Compounds from Creatinine and Study Their Antioxidant Activities. J Med Chem Sci. 2023; 6(6): 1216-1229. https://doi.org/10.26655/JMCHEMSCI.2023.6.2

Al-Jeilawi OHR, Oleiwi AQ. Preparation, characterization, antioxidant activity of 1-(2-furoyl) thiourea derivatives and study the molecular docking of them as potent inhibitors of Urease enzyme. Baghdad Sci J. 2023; 20(3): 994-1011. https://doi.org/10.21123/bsj.2023.7745

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
تخليق ودراسات بيولوجية لمشتقات 4-مثيل-7-اثيل كومارين التي تحتوي على مجموعة الازو. Baghdad Sci.J [انترنت]. [وثق 21 مايو، 2024];21(7). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9143