تحليل المشاعر لدى طلاب اللغة الأردية الرومانية ردود الفعل باستخدام تقنية تضمين الكلمات المحسنة

محتوى المقالة الرئيسي

Noureen
https://orcid.org/0009-0008-7522-2739
Sharin Hazlin Huspi Huspi
https://orcid.org/0000-0002-7591-7249
Zafar Ali

الملخص

تعد تعليقات الطلاب أمرًا بالغ الأهمية للمؤسسات التعليمية لتقييم أداء معلميها، حيث يتم التعبير عن معظم الآراء بلغتهم الأم، خاصة للأشخاص في مناطق جنوب آسيا. في باكستان، يستخدم الناس اللغة الأردية الرومانية للتعبير عن آرائهم، وينطبق هذا في مجال التعليم حيث يستخدم الطلاب اللغة الأردية الرومانية للتعبير عن تعليقاتهم. إنها عملية تستغرق وقتًا طويلاً وتتطلب عمالة مكثفة للتعامل مع الآراء النوعية يدويًا. بالإضافة إلى ذلك، قد يكون من الصعب تحديد دلالات الجملة في نص مكتوب بأسلوب عامي مثل اللغة الأردية الرومانية. تقترح هذه الدراسة تقنية تضمين الكلمات المحسنة وتبحث في تضمين الكلمات العصبية (Word2Vec وGlove) لتحديد أيهما أفضل أداءً لتحليل المشاعر الرومانية الأردية. يستخدم نموذجنا المقترح شبكة BiLSTM للحفاظ على السياق في كلا الاتجاهين وفي النهاية، يتم الحصول على نتائج التصنيف الثلاثي باستخدام طبقة إخراج softmax النهائية. تم استخدام مجموعة بيانات تم تصنيفها يدويًا لتقييم النموذج، وتم جمع البيانات من مؤسسات التعليم العالي في باكستان. تم تقييم النموذج تجريبيًا على مجموعتي بيانات باللغة الأردية الرومانية، ومجموعة بيانات تعليقات الطلاب المطورة حديثًا ومجموعة بيانات RUSA-19 المتاحة للجمهور باللغة الأردية الرومانية. يعمل نموذجنا بفعالية باستخدام تضمين الكلمات وطبقة BiLSTM. تمت مقارنة النموذج المقترح مع النماذج الأساسية لـ CNN، RNN، GRU وLSTM الكلاسيكية. توضح النتائج التجريبية فعالية النموذج المقترح بدرجة F1 تبلغ 90%.

تفاصيل المقالة

كيفية الاقتباس
1.
تحليل المشاعر لدى طلاب اللغة الأردية الرومانية ردود الفعل باستخدام تقنية تضمين الكلمات المحسنة. Baghdad Sci.J [انترنت]. 25 فبراير، 2024 [وثق 23 يناير، 2025];21(2(SI):0725. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9822
القسم
article

كيفية الاقتباس

1.
تحليل المشاعر لدى طلاب اللغة الأردية الرومانية ردود الفعل باستخدام تقنية تضمين الكلمات المحسنة. Baghdad Sci.J [انترنت]. 25 فبراير، 2024 [وثق 23 يناير، 2025];21(2(SI):0725. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9822

المراجع

Qutab, I., K.I. Malik, and H. Arooj. Sentiment Analysis for Roman Urdu Text over Social Media, a Comparative Study. arXiv preprint arXiv.2020;16408.

Khan, I.U., et al., A review of Urdu sentiment analysis with multilingual perspective: A case of Urdu and roman Urdu language. Computers. 2021; 11(1): p. 3. https://doi.org/10.3390/computers11010003

Mehmood, F., et al., A precisely xtreme-multi channel hybrid approach for roman urdu sentiment analysis. IEEE Access. 2020; 8: p. 192740-192759.https://doi.org/10.1109/ACCESS.2020.3030885

Masroor, H., et al., Transtech:development of a novel translator for Roman Urdu to English. Heliyon. 2019; 5(5): p. e01780. https://doi.org/10.1016/j.heliyon.2019.e01780

Poria, S., E. Cambria, and A. Gelbukh, Aspect extraction for opinion mining with a deep convolutional neural network. KBS. 2016; 108: p. 4249. http://dx.doi.org/10.1016/j.knosys.2016.06.009

AL-Bakri NF, Yonan JF, Sadiq AT. Tourism companies assessment via social media using sentiment analysis. Baghdad Sci. J. 2022 Apr 1; 19(2):0422. http://dx.doi.org/10.21123/bsj.2022.19.2.0422

Khan, M. and K. Malik. Sentiment classification of customer’s reviews about automobiles in roman urdu. in Advances in Information and Communication Networks: Proceedings of the 2018 Future of Information and Communication Conference (FICC) .2019;Vol. 2. Springer.

AL-Jumaili AS. A hybrid method of linguistic and statistical features for Arabic sentiment analysis. Baghdad Sci. J. 2020 Mar 18; 17(1 (Suppl.)):0385. https://dx.doi.org/10.21123/bsj.2020.17.1(Suppl.).0385

Wang, W., et al. Coupled multi-layer attentions for co-extraction of aspect and opinion terms. In Proceedings of the AAAI Conference on Artificial Intelligence. 2017. https://doi.org/10.1609/aaai.v31i1.10974

Liao, S.N., et al., A robust machine learning technique to predict low-performing students. ACM transactions on computing education (TOCE). 2019; 19(3): p. 1-19. https://doi.org/10.1145/3277569

Chauhan, G.S., P. Agrawal, and Y.K. Meena, Aspect-based sentiment analysis of students’ feedback to improve teaching–learning process. ICT. 2019; Springer. p. 259-266. https://doi.org/10.1007/978-981-13-1747-7_25

Ali, F., et al., Transportation sentiment analysis using word embedding and ontology-based topic modeling. KBS. 2019; 174: p. 27-42. https://doi.org/10.1016/j.knosys.2019.02.033

Atzeni, M. and D.R. Recupero, Multi-domain sentiment analysis with mimicked and polarized word embeddings for human–robot interaction. Future Gener. Comput. Syst. . 2020; 110: p. 984-999. https://doi.org/10.1016/j.future.2019.10.012

Dessí, D., et al., Deep learning adaptation with word embeddings for sentiment analysis on online course reviews. in deep learning-based approaches for sentiment analysis. 2020; Springer. p. 57-83. https://doi.org/10.1007/978-981-15-1216-2_3

Kaibi, I., E.H. Nfaoui, and H. Satori, Sentiment analysis approach based on combination of word embedding techniques. in Embedded Systems and Artificial Intelligence. 2020; Springer. p. 805-813.https://doi.org/10.1007/978-981-15-0947-6_76

Birjali, M., M. Kasri, and A. Beni-Hssane, A comprehensive survey on sentiment analysis: Approaches, challenges and trends. KBS. 2021; 226: p. 107134. https://doi.org/10.1016/j.knosys.2021.107134

Yadav, A. and D.K. Sentiment analysis using deep learning architectures: a review. Artif. Intell. Rev. . 2020; 53(6): p. 4335-4385. https://doi.org/ 10.1007/s10462-019-09794-5

Rao, G., et al., LSTM with sentence representations for document-level sentiment classification. Neurocomputing. 2018; 308: p. 49-57. https://doi.org/10.1016/j.neucom.2018.04.04

Cheng, Y., et al., Text sentiment orientation analysis based on multi-channel CNN and bidirectional GRU with attention mechanism. IEEE Access. 2020; 8: p. 134964134975. https://doi.org/10.1109/ACCESS.2020.3005823

Abid, F., et al., Sentiment analysis through recurrent variants latterly on convolutional neural network of Twitter. Future Gener. Comput. Syst.2019; 95: p. 292-308. https://doi.org/10.1016/j.future.2018.12.018

Ghulam, H., et al., Deep learning-based sentiment analysis for roman urdu text. Procedia Comput. Sci. . 2019; 147: p. 131-135. https://doi.org/10.1016/j.procs.2019.01.202

Guo, S., et al., Improved SMOTE algorithm to deal with imbalanced activity classes in smart homes. Neural Process. Lett. . 2019;50(2): p. 1503-1526. https://doi.org/10.1007/s11063-018-9940-3

Chandio, B., et al., Sentiment Analysis of Roman Urdu on E-Commerce Reviews Using Machine Learning. CMES-Comput. Model. Eng. Sci, 2022. https://doi.org/10.32604/cmes.2022.019535

Kamyab, M., G. Liu, and M. Adjeisah, Attention-based CNN and Bi-LSTM model based on TF-IDF and glove word embedding for sentiment analysis. Appl. Sci. . 2021; 11(23): p. 11255. https://doi.org/10.3390/app112311255

Xu, G., et al., Sentiment analysis of comment texts based on BiLSTM. Ieee Access. 2019; 7: p. 51522- 51532. https://doi.org/10.1109/ACCESS.2019.2909919

Chandio, B.A., et al., Attention-based RU-BiLSTM sentiment analysis model for roman Urdu. Appl. Sci. . 2022; 12(7): p. 3641. https://doi.org/10.3390/app12073641

Khan, L., et al., Deep sentiment analysis using CNN-LSTM architecture of English and Roman Urdu text shared in social media. Appl. Sci. . 2022; 12(5): p. 2694. https://doi.org/10.3390/app12052694

Chandio, B., et al., Sentiment Analysis of Roman Urdu on E-Commerce Reviews Using Machine Learning. CMES-Comput. Model. Eng. Sci. 2022. https://doi.org/10.32604/cmes.2022.019535

Mahmood, Z., et al., Deep sentiments in roman urdu text using recurrent convolutional neural network model. Information Processing & Management.2020; 57(4): p. 102233. https://doi.org/10.1016/j.ipm.2020.102233.

Uysal, A.K. and S. Gunal, The impact of preprocessing on text classification. Inf. Process. Manage. .2014; 50(1): p. 104-112. https://doi.org/10.1016/j.ipm.2013.08.006

Khan L, Amjad A, Afaq KM, Chang HT. Deep sentiment analysis using CNN-LSTM architecture of English and Roman Urdu text shared in social media. Appl. Sci. . 2022 Mar 4;12(5):2694. https://doi.org/10.3390/app12052694

Mehmood, K., Essam, D., Shafi, K., & Malik, M. K.. Sentiment analysis for a resource poor language—Roman Urdu. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP). 2019;19(1): 1-15. https://doi.org/10.1145/3329709