نظام فقدان متكيف لضغط الصور الملونة بالاعتماد على خوارزمية هجينة

المؤلفون

  • Husam Khalid Khammas تكنلوجيا المعلومات، هندسة الحاسوب، التن باش، اسطنبول، تركيا. https://orcid.org/0009-0002-9711-5658
  • Ayça Kurnaz Türkben تكنلوجيا المعلومات، كلية الهندسة والعلوم الطبيعية، التن باش، اسطنبول، تركيا.

DOI:

https://doi.org/10.21123/bsj.2024.9837

الكلمات المفتاحية:

التشفير الحسابي، تقطيع مستوى البت، نسبة الضغط، تحويل جيب التمام المتقطع، تحويل المويجه المتقطع، ضغط الصور، نسبة الضغط الى الضوضاء، مؤشر التشابه الهيكلي

الملخص

مع التطور الحاصل في العصر الرقمي، أصبحت تقنيات الوسائط المتعددة منتشرة، حيث يتوقع المستخدمون محتوى صوتي ومرئي وصوري عالي الجودة عبر مختلف المنصات والأجهزة الرقمية. ونتيجة لذلك، زاد حجم البيانات الناتجة عن برامج الوسائط المتعددة هذه بشكل كبير. بالإضافة الى ذلك، أدى النمو الهائل في استخدام الوسائط المتعددة الى زيادة في عدد الصور التي يتم استخدامها وإنشاؤها، مما خلق تحديات من حيث الحاجة الى زيادة في سعة التخزين وتحسين سرعة نقل البيانات. ومن أجل مواجهة هذه التحديات، برز ضغط الصور كحل بالغ في الأهمية. حيث يعمل ضغط الصور من خلال تقليل حجم الصورة دون المساس بشكل كبير الى جودتها. ومع التقدم التكنلوجي الحاصل بشكل كبير، ستصبح الحاجة الى المزيد من تقنيات ضغط الصور أمر في بالغ الأهمية. تقدم هذه الورقة البحثية نظام ضياع هجين لضغط الصور بأستخدام أربع تقنيات ضغط مهجنة وهي  تقطيع مستوى البت، وتحويل المويجه المتقطع (DWT)، وتحويل جيب التمام المتقطع (DCT)، والتشفير الحسابي. ولذلك لتنفيذ هذه الطريقة المقترحة في هذا البحث، تم إجراء ثلاث تجارب باستخدام صور ذات أبعاد حجمية مختلفة وهي (256*256) و (512*512) و (1024*1024) وأربعة من معاملات التكميم المختلفة. ومن أجل قياس كفاءة النظام المقترح تم استخدام ثلاثة مقاييس مختلفة وهي: نسبة ذروة الاشارة الى نسبة الضوضاء (PSNR)، ومؤشر التشابه الهيكلي (SSIM)، ونسبة الضغط (CR). وقد أظهرت النتائج إن النظام المقترح نجح في رفع نسبة ضغط الصور الى مستوى أعلى عند مقارنته بتقنية JPEG القياسية حيث وصلت نسبة الضغط CR عند استخدام JPEG   إلى 35%، بينما قدم النظام المقترح نسبة ضغط أعلى قد وصلت الى 62% مع الحفاظ على مستوى مرضي من جودة الصورة.

المراجع

Łukasik E, Łabuć E. Analysis of the possibility of using the singular value decomposition in image compression. Appl Comput Sci. 2022 Dec 3; 18(4): 53–67. https://doi.org/10.35784/acs-2022-28

Asswad J, Marx Gómez J. Data Ownership: A Survey. Inf. 2021 Nov 10;12(11):465. https://doi.org/10.3390/info12110465

Reinsel D, Gantz J, Rydning J. The Digitization of the World from Edge to Core [Internet]. 2018 Nov.

Abd-Alzhra AS, Al- Tamimi MSH. Image Compression Using Deep Learning: Methods and Techniques. Iraqi J Sci. 2022 Mar 30; 1299–312. https://doi.org/10.24996/ijs.2022.63.3.34

UmaMaheswari S, SrinivasaRaghavan V. Retraction Note to: Lossless medical image compression algorithm using tetrolet transformation. J Ambient Intell Humaniz Comput. 2022 Jun 14; 14(S1): 361–1. https://doi.org/10.1007/s12652-022-04132-0

Magar S, Sridharan B. Comparative analysis of various Image compression techniques for Quasi Fractal lossless compression. Int J Comput Commun. 2020 Oct 30; 2(2): 30–45. https://doi.org/10.34256/ijcci2024

Gahalot D, Mehra R, Tech Scholar M. Huffman Coding Algorithm and Dct Implementation for Hybrid Image Compression on Matlab Platform. Pramana Res J [Internet]. 2019;9(11):53–61.

AL-KHAFAJI Ghadah, AL-KAZAZ Hawraa B. Adaptive color image compression of hybrid coding and inter-differentiation based techniques. Int J Comput Sci Mobile Comput. 2019; 8.11: 65-70.‏

Yusra Ahmed Salih, Aree Ali Mohammed, Loay Edwar George. Improved Image Compression Scheme Using Hybrid Encoding Algorithm. Kurd J Appl Res. 2019 Oct 31; 4(2):9 0–101. http://dx.doi.org/10.24017/science.2019.2.9

Al-Hadithy S, Ghadah K, Al-Khafaji Siddeq M. Adaptive 1-D Polynomial Coding of C621 Base for Image Compression. Turk J Comput Math Educ. 2021Jun 4; 12(13): 5720–31. https://doi.org/10.17762/turcomat.v12i13.9823

Awadallah Awad N, Mahmoud A. Improving Reconstructed Image Quality Via Hybrid Compression Techniques. Comput Mater Contin. 2021; 66(3): 3151–60. https://doi.org/10.32604/cmc.2021.014426

Rostam A, Hawar H, Mhamad M, Ahmad B, Qad H. Medical Image Application by Hybrid Transform Coding Scheme. J Comput Syst Sci. 2021 Jun 30; 14(6): 1–3. http://dx.doi.org/10.17265/1548-7709/2021.02.004

Kumar G, Kumar R. Analysis of Arithmetic and Huffman Compression Techniques by Using DWT-DCT. Int J Image Graph Signal Process. 2021 Aug 8; 13(4): 63–70. https://doi.org/10.5815/ijigsp.2021.04.05

Elamparuthi S. Implementation Of A Hybrid Color Image Compression Technique Using Principal Component Analysis And Discrete Tchebichef Transform. Turk J Comput Math Educ. 2021 Apr 28; 12(10): 5374–87. https://doi.org/10.17762/turcomat.v12i10.5339

Aamir Junaid Ahmad, Syed Danish Hassan, Rahul Priyadarshi, Nath V. Analysis on Image Compression for Multimedia Communication Using Hybrid of DWT and DCT. Lect Notes Electr Eng. 2022 Jul 12; 667–72. https://doi.org/10.1007/978-981-19-1906-0_54

Nandeesha R, Somashekar K. Content-Based Image Compression Using Hybrid Discrete Wavelet Transform with Block Vector Quantization. Int J Intell Syst Appl Eng. 2023 Apr. 16; 11(5s): 19-37.

Ranjan R, Kumar P. An Improved Image Compression Algorithm Using 2D DWT and PCA with Canonical Huffman Encoding. Entropy. 2023 Sep 25; 25(10): 1382–2. https://doi.org/10.3390/e25101382

Mustaqim Abrar Md, Pal A, Shahriar Sazzad TM. Bit Plane Slicing and Quantization-Based Color Image Watermarking in Spatial Domain. In: Uddin MS, Bansal JC, editors. Proceedings of international Joint Conference on Advances in Computational Intelligence. Algorithms for Intelligent Systems. Singapore: Springer. 2021; 371–83. http://dx.doi.org/10.1007/978-981-16-0586-4_30

Ishaq W, Buyukkaya E, Ali M, Khan Z. VCC-BPS: Vertical Collaborative Clustering using Bit Plane Slicing. PLOS ONE. 2021 Jan 11; 16(1): e0244691. https://doi.org/10.1371/journal.pone.0244691

Khalid Kadhim Jabbar, Fahmi Ghozzi, Fakhfakh A. Robust Color Image Encryption Scheme Based on RSA via DCT by Using an Advanced Logic Design Approach. Baghdad Sci J. 2023 Dec 5; 20(6(Suppl.)): 2593–3. https://doi.org/10.21123/bsj.2023.8715

Kumari E, Mukherjee S, Singh P, Kumar R. Asymmetric color image encryption and compression based on discrete cosine transform in Fresnel domain. Results Opt. 2020 Nov; 1: 100005. https://doi.org/10.1016/j.rio.2020.100005

Devkota P, Bhusal N, Bhandari A, Pandey MP. DCT Based Image Compression with Llyod’s Quantization and Variable Block-Size. Communications and Information Processing Nepal. Webinar & Conference. 2023.

Hosseinzadeh M. Robust control applications in biomedical engineering: Control of depth of hypnosis. Science Direct. 2020 Jan 1; 89–125. https://doi.org/10.1016/B978-0-12-817461-6.00004-4

Tackie Ammah PN, Owusu E. Robust medical image compression based on wavelet transform and vector quantization. Inform Med Unlocked. 2019; 15: 100183. https://doi.org/10.1016/j.imu.2019.100183

Jana S, Mandal S. DWT Based Image Compression Using Modified Embedded Zero Trees Wavelet Encoding. Volkson Press. 2020 Jan 1. http://dx.doi.org/10.26480/cic.01.2020.148.151

Boopathiraja S, Kalavathi P, Chokkalingam S. A hybrid lossless encoding method for compressing multispectral images using LZW and arithmetic coding. Int J Comput Sci Eng. 2018 May; 6: 313-8.‏‏

Bull D, Zhang F. Intelligent Image and Video Compression: Communicating Pictures . Google Books. Academic Press; 2021.

AbdelWahab OF, Hussein AI, Hamed HFA, Kelash HM, Khalaf AAM. Efficient Combination of RSA Cryptography, Lossy, and Lossless Compression Steganography Techniques to Hide Data. Procedia Comput. Sci. 2021; 182: 5–12.

Paul ES, Anitha J. Analysis of transform-based compression techniques for MRI and CT images. In Intelligent Data Analysis for Biomedical Applications. 2019 Jan 1:103-120. Academic Press.

https://doi.org/10.1016/B978-0-12-815553-0.00005-7

Zhou Y, Wang C, Zhou X. DCT-based color image compression algorithm using an efficient lossless encoder. In2018 14th IEEE International Conference on Signal Processing (ICSP) 2018 Aug 12 (pp. 450-454). IEEE. https://doi.org/10.1109/ICSP.2018.8652455

An Enhanced Approach of Image Steganographic Using Discrete Shearlet Transform and Secret Sharing. Baghdad Sci J. 2021 Jul 20; 19(1): 179-207. https://doi.org/10.21123/bsj.2022.19.1.0197

Raheleh Ghadami, Javad Rahebi. Compression of images with a mathematical approach based on sine and cosine equations and vector quantization (VQ). Soft Comput. 2023 Apr 11; 27(22): 17291–311. https://doi.org/10.1007/s00500-023-08060-9

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
نظام فقدان متكيف لضغط الصور الملونة بالاعتماد على خوارزمية هجينة. Baghdad Sci.J [انترنت]. [وثق 21 نوفمبر، 2024];22(1). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9837