الكشف عن التنميط الجيني  لانزيم الميثيلين تتراهيدروفولات المختزل C677T  لعيوب السنسنة المشقوقة باستخدام تقنية سلسلة البلمرة بنظام تضخيم الطفرة الحرارية رباعي البوادئ

المؤلفون

  • هاله كمال القزاز قسم التقنيات الاحيائية، كلية العلوم ، جامعة بغداد، بغداد، العراق https://orcid.org/0009-0004-7432-3600
  • زهراء الخيرو قسم الاحياء الالمجهرية الطبية، كلية الطب ،الجامعة العراقية، بغداد، العراق
  • حميد هشام حميد جراحة الأعصاب في صحة بابل، مدينة الحلة، بابل، العراق.

DOI:

https://doi.org/10.21123/bsj.2024.9958

الكلمات المفتاحية:

عيب الأنبوب العصبي، انشقاق العمود الفقري، إنزيم ميثيلين رباعي هيدروفولات اختزال، التنميط الجيني، سلسلة البلمرة بنظام تضخيم الطفرة الحرارية رباعي البوادئ

الملخص

عيوب الأنبوب العصبي هي تشوهات هيكلية معقدة عند الأطفال حديثي الولادة. تنجم هذه العيوب عن مزيج من العوامل الوراثية والبيئية في النمط الظاهري غير الطبيعي. تهدف الدراسة الحالية إلى تحديد تعدد أشكال التباين الوراثي في التنميط الجيني لإنزيم ميثيلين تتراهيدروفولات المختزل والكشف عن تعدد أشكال النوكليوتيدات المفردة في عينة الحمض النووي لمرضى السنسنة المشقوقة ومقارنتها مع الأطفال الاصحاء حديثي الولادة. تم جمع عينات الدم من الأطفال حديثي الولادة (50 طفلاً أقل من سنة واحدة) (25 حالة من حالات انشقاق العمود الفقري و25 حالة من الاصحاء). تم استخراج الحمض النووي وتضخيمه بواسطة تقنية تفاعل البلمرة المتسلسل لنظام تضخيم الطفرة الحرارية (تفاعل البلمرة المتسلسل لنظام الطفرة المقاومة للحرارة). تتكون تقنية تفاعل البلمرة الرباعي المضخم من أربعة بادئات (اثنان خارجيان واثنان داخليان) لتضخيم تسلسل الحمض النووي المستهدف للأنماط الجينية المختلفة (أليلات النوع البري والنوع الطافر). تشير النتائج إلى أن الطفرة الجينية للانزيم تتراهيدروفولات المختزل كانت مرتبطة بـالسنسنة المشقوقة عند الأطفال حديثي الولادة ويمكن ان يكون كمؤشر حيوي للكشف عن تطورأمراض السنسنة المشقوقة للاطفال حديثي الولادة.

المراجع

Sanz C M, Chmait RH, Lapa DA, Belfort M A, Carreras E, Miller J L. et al. Experience of 300 cases of prenatal fetoscopic open spina bifida repair: report of the International Fetoscopic Neural Tube Defect Repair Consortium. Am J Obstet Gynecol. 2021; 225(6): 678.e1-678.e11. https://doi.org/10.1016/j.ajog.2021.05.044

Panigrahi DD, Patel S, Rajbhar S, Padhi P, Shah S, Nanda R. et al. Association of Methylenetetrahydrofolate Reductase Gene Polymorphism in Mothers with Adverse Clinical Outcomes in Neonates. Cureus, 2023; 15(4):e38001. https://doi.org/10.7759/cureus.38001

Aguilar-Lacasaña S, López-Flores I, González-Alzaga B, Giménez-Asensio MJ, Carmona FD, Hernández AF. Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphism and Infant's Anthropometry at Birth. Nutrients. 2021; 13(3): 831-846. https://doi.org/10.3390/nu13030831

Bulloch RE, Wall CR, McCowan LME, Taylor RS, Roberts CT, Thompson JMD. The Effect of Interactions between Folic Acid Supplementation and One Carbon Metabolism Gene Variants on Small-for-Gestational-Age Births in the Screening for Pregnancy Endpoints (SCOPE) Cohort Study. Nutrients. 2020; 12(6): 1677-1681. https://doi.org/10.3390/nu12061677

Goyal A, Kumawat M, Vashisth M, Gill PS, Sing I, Dhaulakhandi DB. Study of C677T Methylene Tetrahydrofolate Reductase Gene Polymorphism as a Risk Factor for Neural Tube Defects. Asian J Neurosurg. 2021; 16(3): 554-561. https://doi.org/10.4103/ajns.AJNS_372_20

Kwon BN, Lee NR, Kim HJ, Kang YD, Kim JS, Park JW, et al. Folate metabolizing gene polymorphisms and genetic vulnerability to preterm birth in Korean women. Genes Genomics. 2021; 43(8): 937-945. https://doi.org/10.1007/s13258-021-01082-3

Ledowsky CJ, Schloss J, Steel A. Variations in folate prescriptions for patients with the MTHFR genetic polymorphisms: A case series study. Explor Res Clin Soc Pharm. 2023; 10: 100277. https://doi.org/10.1016/j.rcsop.2023.100277.

Agrawal S, Al‐Refai A, Abbasi N, Kulkarni AV, Pruthi V, Drake J, et al. Correlation of fetal ventricular size and need for postnatal cerebrospinal fluid diversion surgery in open spina bifida. Ultrasound Obstet Gynecol. 2022; 59(6): 799-803. https://doi.org/10.1002/uog.24767

Hassan AS, Du YL, Lee SY, Wang A, Farmer DL. Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies. J Dev Biol. 2022; 10(2): 22-37. https://doi.org/10.3390/jdb10020022

Lapa DA, Chmait RH, Gielchinsky Y, Yamamoto M, Persico N, Santorum M., et al. Percutaneous fetoscopic spina bifida repair: effect on ambulation and need for postnatal cerebrospinal fluid diversion and bladder catheterization. Ultrasound Obstet Gynecol. 2021; 58(4): 582-589. https://doi.org/10.1002/uog.23658

Froese DS, Fowler B, Baumgartner MR. Vitamin B12, folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis. 2019; 42(4): 673-685. https://doi.org/10.1002/jimd.12009

Bajic Z, Sobot T, Skrbic R, Stojiljkovic MP, Ponorac N, Matavulj. Homocysteine, Vitamins B6 and Folic Acid in Experimental Models of Myocardial Infarction and Heart Failure-How Strong Is That Link?. Biomolecules. 2022; 12(4): 536-543 https://doi.org/10.3390/biom12040536

Raghubeer S, Matsha TE. Methylenetetrahydrofolate (MTHFR), the One-Carbon Cycle, and Cardiovascular Risks. Nutrients. 2021; 13(12): 4562-4577 https://doi.org/10.3390/nu13124562

Cernera G, Comegna M, Gelzo M, Savoia M, Bruzzese D, Mormile M. Molecular Analysis of Prothrombotic Gene Variants in Patients with Acute Ischemic Stroke and with Transient Ischemic Attack. Medicina (Kaunas). 2021; 57(7): 723-802. https://doi.org/10.3390/medicina57070723

Feng W, Zhang Y, Pan Y, Zhang Y, Liu M, Huang Y. et al. Association of three missense mutations in the homocysteine-related MTHFR and MTRR gene with risk of polycystic ovary syndrome in Southern Chinese women. Reprod Biol Endocrinol. 2021; 19(1): 5-12. https://doi.org/10.1186/s12958-020-00688-8

Nasri K, Midani F, Kallel A, Ben Jemaa N, Aloui M, Boulares M, et al. Association of MTHFR C677T, MTHFR A1298C, and MTRR A66G Polymorphisms with Neural Tube Defects in Tunisian Parents. Pathobiol.. 2019; 86(4): 190-200. https://doi.org/10.1159/000499498

Ji D, Luo C, Liu J, Cao Y, Wu J, Yan W. et al. Insufficient S-Sulfhydration of Methylenetetrahydrofolate Reductase Contributes to the Progress of Hyperhomocysteinemia. Antioxid Redox Signal. 2022; 36(1-3): 1-14. https://doi.org/10.1089/ars.2021.0029

Caiaffa CD, Gene-environment interactions underlying the etiology of neural tube defects. Curr Top Dev Biol. 2023; 152: 193-220. https://doi.org/10.1016/bs.ctdb.2022.10.007

Isaković J, Šimunić I, Jagečić D, Hribljan V, Mitrečić D. Overview of Neural Tube Defects: Gene-Environment Interactions, Preventative Approaches and Future Perspectives. Biomedicines. 2022; 10(5): 965-990 https://doi.org/10.3390/biomedicines10050965

Beierwaltes P, Munoz S, Wilhelmy J. Integument: Guidelines for the care of people with spina bifida. J Pediatr Rehabil Med. 2020; 13(4): 543-548. https://doi.org/10.3233/PRM-200723

SAS Innovate. Statistical Analysis System, User's Guide. Version 9.6th ed. SAS. 2018; Inst. Inc. Cary. N.C. USA. ISBN 1-59047-243-8.

Behere RV, Deshmukh AS, Otiv S, Gupte MD, Yajnik CS. Maternal Vitamin B12 Status During Pregnancy and Its Association With Outcomes of Pregnancy and Health of the Offspring: A Systematic Review and Implications for Policy in India. Front Endocrinol (Lausanne). 2021; 12: 619176. https://doi.org/10.3389/fendo.2021.619176

Omran MH, Fotouh BE, Shousha WG, Ismail A, Ibrahim NE, Ramadan SS. Strong Correlation of MTHFR Gene Polymorphisms with Breast Cancer and its Prognostic Clinical Factors among Egyptian Females. Asian Pac J Cancer Prev. 2021; 22(2): 617-626. https://doi.org/10.31557/APJCP.2021.22.2.617

Kumari R, Kumar S, Thakur VK, Singh K, Kumar U. MTHFR C677T and MTR A2756G Gene Polymorphism in Neural Tube Defect Patients and Its Association with Red Blood Cell Folate Level in Eastern Indian Population. J Indian Assoc Pediatr Surg. 2022; 27(6): 699-706. https://doi.org/10.4103/jiaps.jiaps_29_22

Guan D, Ji Y, Lu X, Feng W, Ma W. Associations of MTHFR gene polymorphism with lipid metabolism and risk of cerebral infarction in the Northwest Han Chinese population. Front Neurol. 2023; 14: 1152351. https://doi.org/10.3389/fneur.2023.1152351

Raina JK, Sharma M, Panjaliya RK, Dogra V, Bakaya A, Kumar P. Association of ESR1 (rs2234693 and rs9340799), CETP (rs708272), MTHFR (rs1801133 and rs2274976) and MS (rs185087) polymorphisms with Coronary Artery Disease (CAD). BMC Cardiovasc Disord. 2020; 20(1): 340-370. https://doi.org/10.1186/s12872-020-01618-7

Raigani M, Lakpour N, Soleimani M, Johari B, Sadeghi MR. A Association of MTHFR C677T and MTRR A66G Gene Polymorphisms with Iranian Male Infertility and Its Effect on Seminal Folate and Vitamin B12. Int J Fertil Steril. 2021; 15(1): 20-25. https://doi.org/10.22074/ijfs.2021.6155

Fituri S, Akbar Z, Ganji V. Impact of metformin treatment on cobalamin status in persons with type 2 diabetes. Nutr Rev. 2023; 82(4): 553-560. https://doi.org/10.1093/nutrit/nuad045

Sarwar S, Shabana Tahir A, Liaqat Z, Naseer S, Seme RS. Study of variants associated with ventricular septal defects (VSDs) highlights the unique genetic structure of the Pakistani population. Ital J Pediatr. 2022; 48(1): 124. https://doi.org/10.1186/s13052-022-01323-5

Mouhoub-Terrab R, Chibane AA, Khelil M. No association between MTHFR gene C677T/A1298C polymorphisms, serum folate, vitamin B12, homocysteine levels, and prostate cancer in an Algerian population. Mol Genet Genomic Med. 2023; 11(9): e2194. https://doi.org/10.1002/mgg3.2194

Liu Y, Xu C, Wang Y, Yang C, Pu G, Zhang L. et al. Association analysis of MTHFR (rs1801133 and rs1801131) and MTRR (rs1801394) gene polymorphisms towards the development of hypertension in the Bai population from Yunnan, China. Clin Exp Hypertens. 2023; 45(1): 2206066. https://doi.org/10.1080/10641963.2023.2206066

Hari K K, Uma M B, Michelle P, Chithra S, Vasanthi J, Karthik K. et al. The Association between Methylenetetrahydrofolate Reductase (MTHFR) Mutations and Serum Biomarkers of Cardiac Health. Open J Prev Med. 2023; 13(4): 87-107. https://doi.org/10.4236/ojpm.2023.134007

Wei J, Wang T, Song X, Liu Y, Shu J, Sun M. et al. Association of maternal methionine synthase reductase gene polymorphisms with the risk of congenital heart disease in offspring: a hospital-based case-control study. J Matern Fetal Neonatal Med. 2023; 36(1): 2211201. https://doi.org/10.1080/14767058.2023.2211201

Tsukamoto M, Hishida A, Tamura T, Nagayoshi M, Okada R, Kubo Y. et al. GWAS of folate metabolism with gene-environment interaction analysis revealed the possible role of lifestyles in the control of blood folate metabolites in Japanese - the J-MICC Study. J Epidemiol. 2023. https://doi.org/10.2188/jea.JE20220341

White M, Arif-Pardy J, Connor KL. Identification of novel nutrient-sensitive gene regulatory networks in amniocytes from fetuses with spina bifida. Reprod Toxicol. 2023; 116: 108333. https://doi.org/10.1016/j.reprotox.2022.12.010

Tamkeen N, Farooqui A, Alam A, Najma Tazyeen S, Ahmad MM. Identification of common candidate genes and pathways for Spina Bifida and Wilm's Tumor using an integrative bioinformatics analysis. J Biomol Struct Dyn. 2024; 42(2): 977-992. https://doi.org/10.1080/07391102.2023.2199080

Papadakis I, Papadomanolaki M, Vougiouklakis G, Petrakis E, Mazokopakis E. Influence of the methylene tetrahydrofolate reductase (mthfr) gene polymorphisms on serum folate, cobalanin and homocysteine levels in healthy greek adults. J Hypertension, 2023 Jun 1;41(Suppl 3):e143-4.. https://doi.org/10.1097/01.hjh.0000940260.55102.76

Ji D, Luo C, Liu J, Cao Y, Wu J, Yan W, et al. Insufficient S-Sulfhydration of Methylenetetrahydrofolate Reductase Contributes to the Progress of Hyperhomocysteinemia. Antioxid Redox Signal. 2022; 36(1-3): 1-14. https://doi.org/10.1089/ars.2021.0029

Alset D, Kubyshkina DV, Butenko EV, Pokudina IO, Shkurat TP. Association of C677T and A1298C genetic polymorphisms in MTHFR gene with fetal growth restriction, small for gestational age and low birth weight weight. Human gene. 2023; 37. https://doi.org/10.1016/j.humgen.2023.201190

Sun M, Wang T, Huang P, Diao J, Zhang S, Li J, et al. Association analysis of maternal MTHFR gene polymorphisms and the occurrence of congenital heart disease in offspring. BMC Cardiovasc Disord. 2021; 21(1): 298.https://doi.org/10.1186/s12872-021-02117.

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
الكشف عن التنميط الجيني  لانزيم الميثيلين تتراهيدروفولات المختزل C677T  لعيوب السنسنة المشقوقة باستخدام تقنية سلسلة البلمرة بنظام تضخيم الطفرة الحرارية رباعي البوادئ. Baghdad Sci.J [انترنت]. [وثق 21 نوفمبر، 2024];22(6). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9958