Partial Sums of Some Fractional Operators of Bounded Turning Partial Sums of Some Fractional Operators

Main Article Content

Zainab Esa Abdulnaby
https://orcid.org/0000-0001-5545-6564

Abstract

            In this paper, several conditions are put in order to compose the sequence of partial sums ,  and  of the fractional operators of analytic univalent functions ,  and   of bounded turning which are bounded turning too.

Article Details

How to Cite
1.
Partial Sums of Some Fractional Operators of Bounded Turning: Partial Sums of Some Fractional Operators. Baghdad Sci.J [Internet]. 2020 Dec. 1 [cited 2024 Nov. 19];17(4):1267. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/3312
Section
article

How to Cite

1.
Partial Sums of Some Fractional Operators of Bounded Turning: Partial Sums of Some Fractional Operators. Baghdad Sci.J [Internet]. 2020 Dec. 1 [cited 2024 Nov. 19];17(4):1267. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/3312

References

Jahangiri JM, Farahmand K. Partial sums of functions of bounded turning. IJMMS. 2003; 4(4): 45-47‏.

Juma AS, Abdulhussain MS, Al-khafaji3 SN. Faber Polynomial Coefficient Estimates for Subclass of Analytic Bi-Bazilevic Functions Defined by Differential Operator. Baghdad Sci J. 2019; 16(1): 248-253.

Srivastava HM, Kılıçman A, Abdulnaby ZE, Ibrahim RW. Generalized convolution properties based on the modified Mittag-Leffler function. J Nonlinear Sci Appl. 2017; 10: 4284-4294.

Halit O, Yagmur N. Partial sums of generalized Bessel functions. J Math Inequal. 2014; 8: 863-877.

R˘aducanu D. On partial sums of normalized Mittag-Leffler functions. An St Univ Ovidius Constanta. 2017; 25(2): 123-133.

GoodmanAW. Univalent Functions. Washington: Polygonal Publication House; 1983.

Abdulnaby ZE, Ibrahim RW, Kılıçman A. Some properties for integro differential operator defined by a fractional formal. SpringerPlus. 2016; 5(893): 1-9.

Esa Z, Srivastava HM, Kılıçman A, Ibrahim RW. A novel subclass of analytic functions specified by a family of fractional derivatives in the complex domain. Filomat. 2017; 31(9): 2837-2849.

Arif M, Haq MU, Liu JL. A Subfamily of Univalent Functions Associated with q-Analogue of Noor Integral Operator. J Funct Space. 2018; 2018: 1-5.

Abdulnaby ZE, Ibrahim RW, Kılıçman A. On boundedness and compactness of a generalized Srivastava–Owa fractional derivative operator. J King Saud Univ Sci. 2018; 30: 1-5.

Srivastava HM, Shen CY, Owa S. A linear fractional calculus operator and its applications to certain subclasses of analytic functions. J Math Anal Appl. 1989; 143: 138-147.‏

Noor KI, Noor MA. On integral operators. J Math Anal Appl. 1999; 238: 341-352.

Similar Articles

You may also start an advanced similarity search for this article.