Association of Endothelin-I and A symmetric Dimethylarginine Levels with Insulin Resistance in Type-2 Diabetes Mellitus Patients
Main Article Content
Abstract
Endothelin-I (ET-I) is one of the potent vasoconstrictors secreted from endothelial cells when needed. Many studies revealed the elevation of serum ET-I with human diabetes and microangiopathies. Since insulin resistance is a case of mixed diabetic and pre-diabetic cases, many risk factors beyond obesity and inflammation are proposed. The current study aims to demonstrate the association between serum ET-I and asymmetric dimethylarginine (ADMA) and insulin resistance in type 2 diabetes mellitus (T2DM). Sera of 73 subjects were enrolled currently (control= 35 subjects, and 38 with T2DM for more than 7 years), aged (40-60) years old, with distinct body mass index (BMI) ≤ 25 for control volunteers and (BMI) ≥ 25 for obesity and diabetes patients. Peripheral serum ET-I and ADMA levels were significantly (P≤ 0.0001) higher in T2DM than the control subjects. Receiver operating characteristic curve analysis regarded ET-I and ADMA as good markers for T2DM disease and insulin resistance, correlations between ET-I and anthropometrics revealed a strong increase of urotensin-II (UII), ADMA, homeostatic model assessment for insulin resistance (HOMA-IR) and hemoglobin A1C (HbA1C) with an increase of ET-I. These results are supported by the data of multiple regression analysis, showing that HOMA-IR, HbA1C, UII, BMI, and mean arterial pressure (MAP) are related to ET-I independently. The endothelin-I and ADMA had a positive relationship with increase insulin resistance and may serve as prognostic and diagnostic clinical biomarkers of insulin resistance. Collectively, Therefore, these measurements could evaluate the incidence of DM, and help to better rise up the knowledge about the progression of DM complications.
Received 15/11/2020
Accepted 28/1/2021
Published Online First 20/7/2021
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Chai SB, Li XM, Pang YZ, Qi YF, Tang CS.
Increased plasma levels of endothelin-1 and
urotensin-II in patients with coronary heart disease.
Heart and vessels. 2010;25(2):138-43.
Palmer MK, Barter PJ, Lundman P, Nicholls SJ, Toth
PP, Karlson BW. Comparing a novel equation for
calculating low-density lipoprotein cholesterol with
the Friedewald equation: A VOYAGER analysis.
Clin. Biochem. 2019;64:24-9.
Ruze R, Xiong YC, Li JW, Zhong MW, Xu Q, Yan
ZB, et al. Sleeve gastrectomy ameliorates endothelial
function and prevents lung cancer by normalizing
endothelin-1 axis in obese and diabetic rats. World J
Gastroenterol. 2020;26(20):2599-617.
Fouda AY, Fagan SC, Ergul A. Brain Vasculature
and Cognition. Arterioscler. Thromb. Vasc. Biol.
;39(4):593-602.
Kaur R, Kaur M, Singh J. Endothelial dysfunction
and platelet hyperactivity in type 2 diabetes mellitus:
molecular insights and therapeutic strategies.
Cardiovasc. Diabetol. 2018;17(1):121.
D'Souza A, Hussain M, Howarth FC, Woods NM,
Bidasee K, Singh J. Pathogenesis and
pathophysiology of accelerated atherosclerosis in the
diabetic heart. Mol. Cell. Biochem. 2009;331(1-
:89-116.
Brownlee M. The pathobiology of diabetic
complications: a unifying mechanism. Diabetes.
;54(6):1615-25.
Maamoun H, Abdelsalam SS, Zeidan A, Korashy
HM, Agouni A. Endoplasmic Reticulum Stress: A
Critical Molecular Driver of Endothelial Dysfunction
and Cardiovascular Disturbances Associated with
Diabetes. Int. J. Mol. Sci. 2019;20(7).
Luo Z, Aslam S, Welch WJ, Wilcox CS. Activation
of nuclear factor erythroid 2-related factor 2
coordinates dimethylarginine
dimethylaminohydrolase/PPAR-gamma/endothelial
nitric oxide synthase pathways that enhance nitric
oxide generation in human glomerular endothelial
cells. Hypertension (Dallas, Tex : 1979).
;65(4):896-902.
Muniyappa R, Sowers JR. Role of insulin resistance
in endothelial dysfunction. Rev Endocr Metab
Disord. 2013;14(1):5-12.
Open Access Baghdad Science Journal P-ISSN: 2078-8665
, 19(1): 55-63 E-ISSN: 2411-7986
Patel DM, Bose M, Cooper ME. Glucose and Blood
Pressure-Dependent Pathways-The Progression of
Diabetic Kidney Disease. Int. J. Mol. Sci. 2020;21(6).
Lee W, Lee HJ, Jang HB, Kim HJ, Ban HJ, Kim KY,
et al. Asymmetric dimethylarginine (ADMA) is
identified as a potential biomarker of insulin
resistance in skeletal muscle. Sci. Rep.
;8(1):2133.
Huey-Jen Hsu S, Chen MF, Chen DR, Su TC.
Validation of the Estimation of Low-density
Lipoprotein Cholesterol by the Modified Friedewald
Equation in Ethnic Chinese Adults Living in Taiwan.
Intern Med J (Tokyo, Japan). 2015;54(18):2291-7.
Eldin Ahmed Abdelsalam K, Alobeid MEA.
Influence of Grand Multiparity on the Levels of
Insulin, Glucose and HOMA-IR in Comparison with
Nulliparity and Primiparity. Pak. J. Biol. Sci. : PJBS.
;20(1):42-6.
Duncan GE, Hutson AD, Stacpoole PW. QUICKI
does not accurately reflect changes in insulin
sensitivity with exercise training. The J. Clin.
Endocrinol. Metab. 2001;86(9):4115-9.
Sauzeau V, Le Mellionnec E, Bertoglio J, Scalbert E,
Pacaud P, Loirand G. Human urotensin II–induced
contraction and arterial smooth muscle cell
proliferation are mediated by RhoA and Rho-kinase.
Circ Res. 2001;88(11):1102-4.
Ratajczak-Wrona W, Jablonska E, Antonowicz B,
Dziemianczyk D, Grabowska SZ. Levels of
biological markers of nitric oxide in serum of patients
with squamous cell carcinoma of the oral cavity. Int J
Oral Sci. 2013;5(3):141-5.
Jablonska E, Kiersnowska-Rogowska B, Ratajczak
W, Rogowski F, Sawicka-Powierza J. Reactive
oxygen and nitrogen species in the course of B-CLL.
Advances in medical sciences. 2007;52:154-8.
Kelter R. Analysis of Bayesian posterior significance
and effect size indices for the two-sample t-test to
support reproducible medical research. BMC Med
Res Methodol. 2020;20(1):88.
Rovira-Llopis S, Bañuls C, Diaz-Morales N,
Hernandez-Mijares A, Rocha M, Victor VM.
Mitochondrial dynamics in type 2 diabetes:
Pathophysiological implications. Redox Biol.
;11:637-45.
Berra-Romani R, Guzmán-Silva A, VargazGuadarrama A, Flores-Alonso JC, Alonso-Romero J,
Treviño S, et al. Type 2 Diabetes Alters Intracellular
Ca(2+) Handling in Native Endothelium of Excised
Rat Aorta. Int. J. Mol. Sci. 2019;21(1).
He Y, Ding Y, Liang B, Lin J, Kim TK, Yu H, et al.
A Systematic Study of Dysregulated MicroRNA in
Type 2 Diabetes Mellitus. Int. J. Mol. Sci.
;18(3).
Chalghoum A, Noichri Y, Karkouch I, Dandana A,
Baudin B, Jeridi G, et al. Metabolic interactions
between hyperhomocysteinemia and endothelin-1
among Tunisian patients with acute coronary
diseases. Biol. Res. 2015;48(1):32.
Inoue A, Yanagisawa M, Kimura S, Kasuya Y,
Miyauchi T, Goto K, et al. The human endothelin
family: three structurally and pharmacologically
distinct isopeptides predicted by three separate genes.
PNAS USA. 1989;86(8):2863-7.
Reynolds LJ, Credeur DP, Manrique C, Padilla J,
Fadel PJ, Thyfault JP. Obesity, type 2 diabetes, and
impaired insulin-stimulated blood flow: role of
skeletal muscle NO synthase and endothelin-1.
Physiol. (Bethesda, Md : 1985). 2017;122(1):38-47.
Pfützner A, Standl E, Hohberg C, Konrad T,
Strotmann HJ, Lübben G, et al. IRIS II study: intact
proinsulin is confirmed as a highly specific indicator
for insulin resistance in a large cross-sectional study
design. Diabetes Technol Ther. 2005;7(3):478-86.
Arunagiri A, Haataja L, Pottekat A, Pamenan F, Kim
S, Zeltser LM, et al. Proinsulin misfolding is an early
event in the progression to type 2 diabetes. eLife.
;8.
Schäfer A, Gjerga E, Welford RW, Renz I, Lehembre
F, Groenen PM, et al. Elucidating essential kinases of
endothelin signalling by logic modelling of
phosphoproteomics data. Mol. Syst. Biol.
;15(8):e8828.
Bijelic R, Balaban J, Milicevic S, Sipka SU. The
Association of Obesity and Microvascular
Complications with Glycemic Control in Patients
with Type 2 Diabetes Mellitus. Med Arch (Sarajevo,
Bosnia and Herzegovina). 2020;74(1):14-8.
Reynolds LJ, Credeur DP, Manrique C, Padilla J,
Fadel PJ, Thyfault JP. Obesity, type 2 diabetes, and
impaired insulin-stimulated blood flow: role of
skeletal muscle NO synthase and endothelin-1. J.
Appl. Physiol. 2017;122(1):38-47.
Jayagopal V, Kilpatrick ES, Jennings PE, Hepburn
DA, Atkin SL. Biological variation of homeostasis
model assessment-derived insulin resistance in type 2
diabetes. Diabetes Care. 2002;25(11):2022-5.
El Assar M, Angulo J, Santos-Ruiz M, Ruiz de Adana
JC, Pindado ML, Sánchez-Ferrer A, et al.
Asymmetric dimethylarginine (ADMA) elevation and
arginase up-regulation contribute to endothelial
dysfunction related to insulin resistance in rats and
morbidly obese humans. J Physiol.
;594(11):3045-60.
Caplin B, Leiper J. Endogenous nitric oxide synthase
inhibitors in the biology of disease: markers,
mediators, and regulators? Arterioscler. Thromb.
Vasc. Biol. 2012;32(6):1343-53.
Anderssohn M, Schwedhelm E, Lüneburg N, Vasan
RS, Böger RH. Asymmetric dimethylarginine as a
mediator of vascular dysfunction and a marker of
cardiovascular disease and mortality: an intriguing
interaction with diabetes mellitus. Diabetes Vasc. Dis.
Res. 2010;7(2):105-18.
Beppu M, Obayashi S, Aso T, Goto M, Azuma H.
Endogenous nitric oxide synthase inhibitors in
endothelial cells, endothelin-1 within the vessel wall,
and intimal hyperplasia in perimenopausal human
uterine arteries. J. Cardiovasc. Pharmacol.
;39(2):192-200.
Enevoldsen FC, Sahana J, Wehland M, Grimm D,
Infanger M, Krüger M. Endothelin Receptor
Antagonists: Status Quo and Future Perspectives for
Targeted Therapy. Clin. Med. 2020;9(3).
Open Access Baghdad Science Journal P-ISSN: 2078-8665
, 19(1): 55-63 E-ISSN: 2411-7986
Xiong Y, Hai CX, Fang WJ, Lei YP, Li XM, Zhou
XK. Endogenous asymmetric dimethylarginine
accumulation contributes to the suppression of
myocardial mitochondrial biogenesis in type 2
diabetic rats. NUTR METAB. 2020;17:72.
Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer
A, Horrighs A, et al. Chemerin is a novel adipocytederived factor inducing insulin resistance in primary
human skeletal muscle cells. Diabetes.
;58(12):2731-40.
Burhans MS, Hagman DK, Kuzma JN, Schmidt KA,
Kratz M. Contribution of Adipose Tissue
Inflammation to the Development of Type 2 Diabetes
Mellitus. Compr.Physiol. 2018;9(1):1-58.
Ross R, Neeland IJ, Yamashita S, Shai I, Seidell J,
Magni P, et al. Waist circumference as a vital sign in
clinical practice: a Consensus Statement from the IAS
and ICCR Working Group on Visceral Obesity. Nat.
Rev. Endocrinol. 2020;16(3):177-89.
Li YY, Shi ZM, Yu XY, Feng P, Wang XJ. Urotensin
II-induced insulin resistance is mediated by NADPH
oxidase-derived reactive oxygen species in HepG2
cells. World J Gastroenterol. 2016;22(25):5769-79.
Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D,
Matsuoka TA, Matsuhisa M, et al. Possible novel
therapy for diabetes with cell-permeable JNKinhibitory peptide. Nat. Med. 2004;10(10):1128-32.
Maguire JJ, Kuc RE, Davenport AP. Orphan-receptor
ligand human urotensin II: receptor localization in
human tissues and comparison of vasoconstrictor
responses with endothelin-1. Br. J. Pharmacol.
;131(3):441-6.