Some Subclasses of Univalent and Bi-Univalent Functions Related to K-Fibonacci Numbers and Modified Sigmoid Function

Authors

  • Amal Madhi Rashid Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Ramadi, Iraq. https://orcid.org/0000-0002-7061-1857
  • Abdul Rahman S. Juma Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Ramadi, Iraq.

DOI:

https://doi.org/10.21123/bsj.2022.6888

Keywords:

Bi-univalent function, Borel distribution, Fibonacci numbers, Modified sigmoid function, Univalent function

Abstract

            This paper is interested in certain  subclasses of univalent and bi-univalent functions concerning  to shell- like curves connected with k-Fibonacci numbers involving modified Sigmoid activation function θ(t)=2/(1+e^(-t) ) ,t ≥0 in unit disk |z|<1 . For estimating of the initial coefficients |c_2 | , |c_3 |, Fekete-Szego ̈ inequality and the  second Hankel determinant have been investigated for the functions in our classes. 

References

Çağlar M, Deniz E, Srivastava HM. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk J Math. 2017 May 22; 41(3): 694-706.

Magesh N, Nirmala J, Yamini J. Initial estimates for certain subclasses of bi-univalent functions with k- Fibonacci numbers. arXiv preprint. arXiv:2001. 2020 Jan 22: 08569.

Özlem Güney H, Murugusundaramoorthy G, Sokol J . Certain subclasses of bi-univalent functions related to k-Fibonacci numbers. Commun. Fac Sci Univ Ank Ser. A1 Math. Stat. 2019; 68(2): 1909-1921.

Özgür NY, Sokół J. On Starlike Functions Connected with k-Fibonacci Numbers. Bull Malays Math Sci Soc. 2015 Jan; 38(1): 249-58.

Fadipe-Joseph OA, Kadir BB, Akinwumi SE, Adeniran EO. Polynomial bounds for a class of univalent function involving sigmoid function. Khayyam J Math. 2018 Jan 1; 4(1): 88-101.

Wanas AK, Khuttar JA. Applications of Borel distribution series on analytic functions. Earthline J Math Sci. 2020 Apr 20; 4(1): 71-82.

Ruscheweyh S. New criteria for univalent functions. Proc. Amer. Math. Soc. 1975 May 1: 109-15.

Noonan JW, Thomas DK. On the second Hankel determinant of areally mean p-valent functions. Trans Amer. Math. Soc. 1976; 223: 337-46.

Noor KI. Hankel determinant problem for the class of functions with bounded boundary rotation. Rev Roum Math Pure Appl. 1983 Jan 1;28(8):731-9.

Ehrenborg R. The Hankel determinant of exponential polynomials. The American Math. Monthly. 2000 Jun 1; 107(6): 557-60.

Mehrok BS, Singh G. Estimate of second Hankel determinant for certain classes of analytic functions. Scientia Magna. 2012 Jul 1; 8(3): 85-94.

Magesh N, Yamini J. Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions. Tbil Math J. 2018 Jan; 11(1): 141-57.

Srivastava HM, Altınkaya Ş, Yalcın S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat. 2018; 32(2): 503-16.

Güney HÖ, Murugusundaramoorthy G, Srivastava HM. The second Hankel determinant for a certain class of bi-close-to-convex functions. Results Math. 2019 Sep; 74(3): 1-3.

Fekete M, Szegö G. Eine Bemerkung über ungerade schlichte Funktionen. J. london math. soc. 1933 Apr; 1(2): 85-9.

Shehab NH, Juma AR. Third Order Differential Subordination for Analytic Functions Involving Convolution Operator. Baghdad Sc J. 2022; 19(3): 0581-0581.

Challab KA. Study of Second Hankel Determinant for Certain Subclasses of Functions Defined by Al-Oboudi Differential Operator. Baghdad Sc J. 2020 Mar 18; 17(1): 0353-0353.

Frasin BA, Swamy SR, Aldawish I. A Comprehensive Family of Bi univalent Functions Defined by k-Fibonacci Numbers. J Funct Spaces . 2021 Oct 31; 2021.

Shabani MM, Sababe SH. Coefficient bounds for a subclass of bi-univalent functions associated with Dziok- Srivastava operator. Korean J. Math. 2022; 30(1): 73-80.

Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl math letters. 2010 Oct 1; 23(10): 1188-92.

Sokol J, İlhan S, Güney H. Second Hankel determinant problem for several classes of analytic functions related to shell-like curves connected with Fibonacci numbers. Turkic World Mathematical Society J Appl Eng Math. 2018 Jan 1; 8(1.1): 220-9.

Downloads

Published

2023-06-01

Issue

Section

article

How to Cite

1.
Some Subclasses of Univalent and Bi-Univalent Functions Related to K-Fibonacci Numbers and Modified Sigmoid Function. Baghdad Sci.J [Internet]. 2023 Jun. 1 [cited 2025 Jan. 20];20(3):0843. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6888