The Role of Chlorella vulgaris in Reducing Some Pharmaceutical Wastes Toxicity in Clam Pseudodontopsis euphraticus

Main Article Content

Zahraa H. Obaid
https://orcid.org/0000-0003-1558-1680
Nuha F. Kadhim
Jasim Mohammed Salman
https://orcid.org/0000-0002-2130-7197

Abstract

Applications of microalgae in environmental studies have recently increased. Current uses of immobilized microalga Chlorella vulgaris include reducing pharmaceutical substances such as amoxicillin AMX and potassium dichromate K2Cr2O7 on freshwater clam Pseudodontopsis euphraticus as a biotic model. Recent research pointed out a change in biomarkers of oxidative stress in an evaluation of induced toxicity. Where clams were exposed to different concentrations100, 200, and 400 mg/L for 7 days and 20, 30, and 50 mg/L for 5 days of amoxicillin and potassium dichromate, respectively. The results showed that exposure to AMX and K2Cr2O7 led to a significant change in the activity of antioxidant enzymes, with significant increases (p<0.05) in reactive oxygen species (ROS) production. The highest ROS value was 51.05 μg/mg under concentrations of 50 mg/L of K2Cr2O7, and the highest recorded percentage of Superoxide Dismutase SOD, Catalase CAT, Malondialdehyde MDA, and Glutathione Reductase GSH, as: 33.40 U/m, 33.32KU/L, 23.22 μmol/l and 21.30µg/g respectively, in concentrations of 50 mg/L of K2Cr2O7 non-treated. It was observed in this study that potassium dichromate was more effective than amoxicillin in causing toxicity. According to the current study, immobilized C. vulgaris was instrumental in decreasing chemicals toxicity, by relieving oxidative stress on P. euphraticus clam, as it recorded a significant decrease p≤ 0.05 in ROS values and oxidizing enzymes such as Superoxide Dismutase SOD, Catalase CAT, Malondialdehyde MDA, as well as ascorbic acid. AA, total protein and GPX in treated samples.

Article Details

How to Cite
1.
The Role of Chlorella vulgaris in Reducing Some Pharmaceutical Wastes Toxicity in Clam Pseudodontopsis euphraticus. Baghdad Sci.J [Internet]. 2024 Feb. 1 [cited 2025 Jan. 18];21(2):0289. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8214
Section
article

How to Cite

1.
The Role of Chlorella vulgaris in Reducing Some Pharmaceutical Wastes Toxicity in Clam Pseudodontopsis euphraticus. Baghdad Sci.J [Internet]. 2024 Feb. 1 [cited 2025 Jan. 18];21(2):0289. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8214

References

Touliabah HES, El-Sheekh MM, Ismail MM, El-Kassas H. A Review of Microalgae- and Cyanobacteria-Based Biodegradation of Organic Pollutants. Molecules. 2022 Feb 8; 27(3): 1141. https://doi.org/10.3390/molecules27031141

Sarkheil M , Ameri M ,Safari O. Application of alginate-immobilized microalgae beads as biosorbent for removal of total ammonia and phosphorus from water of African cichlid (Labidochromislividus) recirculating aquaculture system. Environ Sci Pollut Res Int. 2022; 29(8) :11432-11444. https://doi.org/10.1007/s11356-021-16564-w

Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, Sharma VK. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere. 2020 Jul; 251: 126351. https://doi.org/10.1016/j.chemosphere.2020.126351

Orozco-Hernández JM, Gómez Oliván LM, Heredia-García G, Luja-Mondragón M, Islas-Flores H, SanJuan-Reyes N, et al. Genotoxic and cytotoxic alterations induced by environmentally-relevant concentrations of amoxicillin in blood cells of Cyprinuscarpio. Chemosphere. 2019 Dec; 236: 124323. https://doi.org/10.1016/j.chemosphere.2019.07.054.

Barbooti MM, Zahraw SH. Removal of amoxicillin from water by adsorption on water treatment residues. Baghdad Sci J. 2020 Sep 8; 17(3): 1071–9. http://dx.doi.org/10.21123/bsj.2020.17.3(Suppl.).1071

Stanton IC, Bethel A, Leonard AFC, Gaze WH, Garside R. Existing evidence on antibiotic resistance exposure and transmission to humans from the environment: a systematic map. Environ Evid. 2022 Mar 12; 11(1): 8. https://doi.org/10.1186/s13750-022-00262-2.

Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi SP. An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channapunctatus (Bloch, 1793). Aquat Toxicol. 2018 Jul; 200: 158–67. https://doi.org/10.1016/j.aquatox.2018.05.001.

Laxmi V, Kaushik G. Toxicity of Hexavalent Chromium in Environment, Health Threats, and Its Bioremediation and Detoxification from Tannery Wastewater for Environmental Safety. InBioremediat. J Singapore: Springer Singapore; 2020: 223–43. https://doi.org/10.1007/978-981-13-1891-7_11

Cavbera J, Mariela González P, Puntarulo S. Oxidative effects of the harmful algal blooms on primary organisms of the food web. Biocell. 2019; 43(2): 41–50. https://doi.org/10.32604/biocell.2019.06163.

Lee JW, Kim JH, Lee DC, Lim HJ, Kang JC. Toxic Effects on Oxidative Stress, Neurotoxicity, Stress, and Immune Responses in Juvenile Olive Flounder, Paralichthys olivaceus, Exposed to Waterborne Hexavalent Chromium. Biology. 2022 May 17; 11(5): 766. https://doi.org/10.3390/biology11050766

Fantón N, Bacchetta C, Rossi A, Gutierrez MF. Effects of a glyphosate-based herbicide on the development and biochemical biomarkers of the freshwater copepod Notodiaptomu scarteri (Lowndes, 1934). Ecotoxicol Environ Saf .2020, 196 : 110501. Jun;196:110501. https://doi.org/10.1016/j.ecoenv.2020.110501

Esposito G, Pastorino P, Prearo M. Environmental Stressors and Pathology of Marine Molluscs. J Mar Sci Eng. 2022 Feb 23; 10(3): 313., https://doi.org/10.3390/jmse10030313

El-Gendy KS, Gad AF, Radwan MA. Physiological and behavioral responses of land molluscs as biomarkers for pollution impact assessment: A review. Environ Res. 2021 Feb; 193: 110558. https://doi.org/10.1016/j.envres.2020.110558

Primost MA, Averbuj A, Bigatti G, Márquez F. Embryonic shell shape as an early indicator of pollution in marine gastropods. Mar Environ Res. 2021 May; 167: 105283. https://doi.org/10.1016/j.marenvres.2021.105283

Ajala M, Ameur W ben, Annabi A. First evidence of the utility of cephalopods for biomonitoring program in the field: case of Sepia officinalis south west of Mediterranean Sea (Gulf of Gabes, Tunisia). Environ. Sci Pollut Res. 2022 Apr 6; 29(19): 28675–87. https://doi.org/10.1007/s11356-021-17804-9

Chahouri A, Agnaou M, el Hanaoui M, Yacoubi B, Moukrim A, Banaoui A. Assessment of seasonal and spatial variation responses of integrated biomarkers in two marine sentinel bivalve species: Agadir Bay (Southern of Morocco). Mar Pollut Bull. 2022 Jan;174: 113179. https://doi.org/10.1016/j.marpolbul.2021.113179

Zaidi M, Athmouni K, Metais I, Ayadi H, Leignel V. The Mediterranean limpet Patella caerulea (Gastropoda, Mollusca) to assess marine ecotoxicological risk: a case study of Tunisian coasts contaminated by metals. Environ Sci Pollut Res. 2022 Apr 6; 29(19): 28339–58. https://doi.org/10.1007/s11356-021-18490

Salem OMA, Abdelsalam A, Boroujerdi A. Bioremediation potential of chlorella vulgaris and nostocpaludosum on azo dyes with analysis of metabolite changes. Baghdad Sci J. .2021; 18(3): 454–64 . http://dx.doi.org/10.21123/bsj.2021.18.3.0445

Salman JM, Kaduem NF, Juda SA. Algal immobilization as a green technology for domestic wastewater treatment. IOP Conf Ser: Earth Environ Sci.; 2022. https://doi.org/10.1088/1755-1315/1088/1/012005

El-Sheekh MM, Metwally MA, Allam N, Hemdan HE. Simulation Treatment of Industrial Wastewater Using Microbiological Cell Immobilization Technique. Iran J Sci Technol Trans Sci 2020 Jun 19; 44(3): 595–604. https://doi.org/10.1007/s40995-020-00866-8

Alhumairi A, Hamouda R, Saddiq A. Comparative study between immobilized and suspended Chlorella sp in treatment of pollutant sites in Dhiba port Kingdom of Saudi Arabia. Heliyon. 2022 Sep; 8(9): e10766. https://doi.org/10.1016/j.heliyon.2022.e10766

Haider Z, al Mosawi A, Omran A, Ajanabi H, Mohammed A, al Mamoori J. Immobilize Algae To Removal Copper And Lead From Aquatic Ecosystem. Nat Volatiles Essent Oils. 2022; 9(1): 850-860.

AdlercreutzP, Mattiasson B. Oxygen supply to immobilized cells. Appl Microbiol Biotechnol. 1982; 16(4): 165–70. https://doi.org/10.1007/BF00505826

Eggermont M, Cornillie P, Dierick M, Adriaens D, Nevejan N, Bossier P, et al. The blue mussel inside: 3D visualization and description of the vascular-related anatomy of Mytilusedulis to unravel hemolymph extraction. Sci Rep. 2020 Dec 21; 10(1): 6773. https://doi.org/10.1038/s41598-020-62933-9

Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Bio chem. 2005 Dec; 38(12): 1103–11. https://doi.org/10.1016/j.clinbiochem.2005.08.008

Buege JA, Aust SD. Aust SD Microsomal Lipid peroxidation. Methods Enzymol 1978; 52: 302-10. https://doi.org/10.1016/s0076-6879(78)52032-6

Hafeman DG, Sunde RA, Hoekstra WG. Effect of Dietary Selenium on Erythrocyte and Liver Glutathione Peroxidase in the Rat. J Nutr. 1974 May 1; 104(5): 580–7. https://doi.org/10.1093/jn/104.5.580

Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta Gen Subj. 1979 Jan 4; 582(1): 67–78. https://doi.org/10.1016/0304-4165(79)90289-7

Lowry DH. Protein measurements with the Folin phenol reagent. J Biol Chem. 1951; 193: 265-275.

McCormick DB and GHL. Vitamins. In Burtis, C.A. Ashwood E.R. Tietz Textbook of Clinical Chemistry. WB Saunders Co, Philadelphia. 1999: 999-1028.

Orozco-Hernández JM, Oliván LMG, Heredia-García G, Luja-MondragónM, Islas-FloresH, SanJuan-Reyes N ,Dublán-García O. Genotoxic and cytotoxic alterations induced by environmentally-relevant concentrations of amoxicillin in blood cells of Cyprinuscarpio. Chemosphere. 2019; 236: 12432. https://doi.org/10.1016/j.chemosphere.2019.07.054

Elizalde-Velázquez A, Martínez-Rodríguez H, Galar-Martínez M, Dublán-García O, Islas-Flores H, Rodríguez-Flores J, et al. Effect of amoxicillin exposure on brain, gill, liver, and kidney of common carp ( Cyprinuscarpio ): The role of amoxicilloic acid. Environ Toxicol. 2017 Apr; 32(4): 1102–20. https://doi.org/10.1002/tox.22307

Sodhi KK, Kumar M, Singh DK. Insight into the amoxicillin resistance, ecotoxicity, and remediation strategies. J Water Process Eng. 2021 Feb; 39: 101858. https://doi.org/10.1016/j.jwpe.2020.101858

Marouani N, Tebourbi O, Mokni M, Yacoubi MT, Sakly M, Benkhalifa M, et al. Hexavalent Chromium-Induced Apoptosis in Rat Uterus: Involvement of Oxidative Stress. Arch Environ Occup Health. 2015 Jul 4; 70(4): 189–95. https://doi.org/10.1080/19338244.2013.828673

González-González ED, Gómez-Oliván LM, Islas-Flores H, Galar-Martínez M. Developmental Effects of Amoxicillin at Environmentally Relevant Concentration Using ZebrafishEmbryotoxicity Test (ZET). Water Air Soil Pollut. 2021 May 1; 232(5): 196. https://doi.org/10.1007/s11270-021-05148-6

Singh, V., Pandey, B., &Suthar, S, Surindra. Phytotoxicity of amoxicillin to the duckweed Spirodelapolyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation. Chemosphere. 2018, 201: 492-502. https://doi.org/10.1016/j.chemosphere.2018.03.010

Drozdz-Afelt JM, Koim-Puchowska BB, Kaminski P. Analysis of oxidative stress indicators in Polish patients with prostate cancer. Environ Sci Pollut Res Int. 2022 Jan 19; 29(3): 4632–40. https://doi.org/10.1007/s11356-021-15922-y

Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018 Dec 1; 54(4): 287–93. https://doi.org/10.1016/j.ajme.2017.09.001

Bio S, Nunes B. Acute effects of diclofenac on zebrafish: Indications of oxidative effects and damages at environmentally realistic levels of exposure. Environ Toxicol Pharmacol. 2020 Aug;78:103394. https ://doi.org/10.1016/j.etap.2020.103394

Sanajou S, Şahin G. Mechanistic Biomarkers in Toxicology. Turk J Pharm Sci. 18(3): 376–384, Jun. 2021. https://doi.org/10.4274/tjps.galenos.2020.10270

Elizalde-Velázquez A, Martínez-Rodríguez H, Galar-Martínez M, Dublán-García O, Islas-Flores H, Rodríguez-Flores J, et al. Effect of amoxicillin exposure on brain, gill, liver, and kidney of common carp ( Cyprinuscarpio ): The role of amoxicilloic acid. Environ Toxicol. 2017 Apr; 32(4): 1102–20. https://doi.org/10.1002/tox.22307

Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi SP. An in vivo analysis of Cr6+ induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquat Toxicol 2018 Jul; 200: 158–67. https://doi.org/10.1016/j.aquatox.2018.05.001

Osioma E, Ezugworie TT. Comparative evaluation of antioxidant enzymes, lipid peroxidation, nitric oxide, and non – microsomal oxidases in Galatea paradoxa exposed to varying concentrations of ‘uproot’ a glyphosate-based herbicide. Egypt J Aquat Biol Fish. 2022 May 1; 26(3): 213–28. https://doi.org/10.21608/EJABF.2022.239713

Chen H, Zha J, Yuan L, Wang Z. Effects of fluoxetine on behavior, antioxidant enzyme systems, and multixenobiotic resistance in the Asian clam Corbiculafluminea. Chemosphere. 2015 Jan; 119: 856–62. https://doi.org/10.1016/j.chemosphere. 2014. 08. 062

Chaâbane M, Bejaoui S, Trabelsi W, Telahigue K, Chetoui I, Chalghaf M, et al. The potential toxic effects of.hexavalent chromium on oxidative stress biomarkers and fatty acids profile in soft tissues of Venus verrucosa. Ecotoxicol Environ Saf. 2020; 195: 110562. https://doi.org/10.1016/j.ecoenv.2020.110562

TopićPopović N, Krbavčić M, Barišić J, Beer Ljubić B, Strunjak-Perović I, Babić S, et al. Comparative Tissue Responses of Marine Mollusks on Seasonal Changes in the Northern Adriatic Sea. Appl Sci. 2021 Mar 23; 11(6): 2874.https://doi.org/10.3390/app11062874

Péden R, Rocher B, Chan P, Vaudry D, Poret A, Olivier S, et al. Highly polluted life history and acute heat stress, a hazardous mix for blue mussels. Mar Pollut Bull. 2018 Oct; 135: 594–606. https://doi.org/10.1016/j.marpolbul.2018.07.066

López-Pedrouso M, Lorenzo JM, Varela Z, Fernández JÁ, Franco D. Finding Biomarkers in Antioxidant Molecular Mechanisms for Ensuring Food Safety of Bivalves Threatened by Marine Pollution. Antioxidants. 2022 Feb 11; 11(2): 369. https://doi.org/10.3390/antiox11020369‏

Ahmad MK, Syma S, Mahmood R. Cr(VI) induces lipid peroxidation, protein oxidation and alters the activities of antioxidant enzymes in human erythrocytes. Biol Trace Elem Res. 2011 Dec; 144(1–3): 426–35. https://doi.org/10.1007/s12011-011- 9119-5

Wirth R, Pap B, Böjti T, Shetty P, Lakatos G, Bagi Z, et al. Chlorella vulgaris and Its Phycosphere in Wastewater: Microalgae-Bacteria Interactions During Nutrient Removal. Front Bioeng Biotechnol. 2020 Sep 22; 8. https://doi.org/10.3389/fbioe.2020.557572

Leong YK, Huang CY ,Chang JS . Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS). J Environ Manage. 021; 296: 113193. . https://doi.org/10.1016/j.jenvman.2021.113193

Xiao G, Chen J, Show PL,Yang Q , Ke J , Zhao Q , Liu Y. Evaluating the Application of Antibiotic Treatment Using Algae-Algae/Activated Sludge System. Chemosphere. 2021; 282: 130966. https://doi.org/10.1016/j.chemosphere.2021.130966

Xiong JQ, KMB, & JBH. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. ChemEng J. 2017; 313: 1251-1257. https://doi.org/10.1016/j.cej.2016.11.017

Zhao Z, Xue R, Fu L, Chen C, Ndayisenga F, Zhou D. Carbon dots enhance the recovery of microalgae bioresources from wastewater containing amoxicillin. Bioresour Technol. 2021 Sep; 335: 125258. https://doi.org/10.1016/j.biortech.2021.125258

Ricky R, Chiampo F, Shanthakumar S. Efficacy of Ciprofloxacin and Amoxicillin Removal and the Effect on the Biochemical Composition of Chlorella vulgaris. Bioengineering. 2022 Mar 24; 9(4): 134. https://doi.org/10.3390/bioengineering9040134

Cao S, Teng F, Lv J, Zhang Q, Wang T, Zhu C, et al. Performance of an immobilized microalgae-based process for wastewater treatment and biomass production: Nutrients removal, lipid induction, microalgae harvesting and dewatering. Bioresour Technol. 2022 Jul;356:127298. https://doi.org/10.1016/j.biortech.2022.127298

Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Int J Environ Res Public Health. 2022 Jun 23; 19(13): 7717. https://doi.org/10.3390/ijerph19137717

Ayele A, Godeto YG. Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups. J Chem. 2021. https://doi.org/10.1155/2021/7694157

Al-Homaidan AA, Al-Qahtani HS, Al-Ghanayem AA, Ameen F, Ibraheem IBM. Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi J Biol Sci. 2018 Dec; 25(8): 1733–8. https://doi.org/10.1016/j.sjbs.2018.07.011

Ukhurebor KE, Aigbe UO, Onyancha RB, Nwankwo W, Osibote OA, Paumo HK, et al. Effect of hexavalent chromium on the environment and removal techniques: A review. J Environ Manage. 2021 Feb;280: 111809. https://doi.org/10.1016/j.jenvman.2020.111809.

Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. Int J Environ Res Public Health. 2022;19(13):7717. https://doi.org/10.3390/ijerph19137717

Ayele A , Godeto YG. Bioremediation of Chromium by Microorganisms and Its Mechanisms Related to Functional Groups. J Chem. 2021; 2021. https://doi.org/10.1155/2021/7694157

Al-Homaidan AA, Al-Qahtani HS, Al-Ghanayem AA, Ameen F, Ibraheem IBM. Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi J Biol Sci. 2018;25(8):1733–8. https://doi.org/10.1016/j.sjbs.2018.07.011

Ukhurebor KE, Aigbe UO, Onyancha RB, Nwankwo W, Osibote OA, Paumo HK, et al. Effect of hexavalent chromium on the environment and removal techniques: A review. J Environ Manage. 2021;280:111809. https://doi.org/10.1016/j.sjbs.2018.07.011