Reverse Phase -High Performance Liquid Chromatography technique with Ultra-Violet detector for the Determination of Tenoxicam and Ibuprofen Drugs in the pure and Pharmaceutical tablets
Main Article Content
Abstract
Reversed-phase high-performance liquid chromatography (RP-HPLC) equipped with an ultraviolet (UV) detector is capable of detecting drugs in trace amounts. In this study, a simple and rapid method for quantifying tenoxicam (TNX) and ibuprofen (IBU) in pure and pharmaceutical samples was developed and validated. The target analytes assessed in the present study were separated with a C18 column (HPLC column, 5 µm, 150 × 4.6 mm). Acetonitrile and acidified water [0.7 mL of phosphoric acid (H3PO4) in 1000 mL water at 50/50%] were employed as the mobile phase at a 1 ml/min flow rate and a 20 µl sample injection volume at 25°C. Condition calibration curves for each drug were obtained within the 10–50 µg/mL dynamic concentration range. The method proposed in this study exhibited good performance, where the TNX and IBU recorded limit of detection (LOD) values of 1.5677 and 0.7911 µg/mL at 0.5, 1.3, 5.0, 7.0, 9.0, and 10.0 µg/mL. Resultantly, the method possessed specificity, linearity, precision, and accuracy. The suggested approach was satisfactory and appropriate for determining TNX and IBU levels during routine quality control assessments of medications in pure forms, mixtures, and formulations
Received 18/02/2023
Revised 01/07/2023
Accepted 03/07/2023
Published Online First 20/01/2024
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Ibrahim RM, Ibrahim NM, Abdul-jalil TZ. Polyphenolic Profiles and Cytotoxic Effect of Iraqi Morus alba leaves Ethyl Acetate Extract. Biomed Pharmacol J. 2023; 16(1): 429–40.https://dx.doi.org/10.13005/bpj/2624
Abed HN, Hussein AA. Ex-vivo absorption study of a novel dabigatran etexilate loaded nanostructured lipid carrier using non-everted intestinal SAC model. Iraqi J Pharm Sci. 2019; 28(2): 37–45. https://doi.org/10.31351/vol28iss2pp37-45
Antonoaea P, Cârje AG, Ciurba A, Todoran N, Vlad AR, Muntean DL. Validation of High performance liquid chromatography methods for determination of meloxicam and tenoxicam from transdermal therapeutic systems. Acta Med Marisiensis 2017; 63(4): 178–82. https://dx.doi.org/10.1515/amma-2017-0033
Ismail A, Haroun M, Alahmad Y. Qualitative and Quantitative Determination of Dapagliflozin Propanediol Monohydrate and Its Related Substances and Degradation Products Using LC-MS and Preparative Chromatography Methods, Baghdad Sci J. 2023. https://dx.doi.org/10.21123/bsj.2023.7596
Hamed HE, Hussein AA. Preparation, in vitro and ex-vivo Evaluation of Mirtazapine Nanosuspension and Nanoparticles Incorporated in Orodispersible Tablets. Iraqi J Pharm Sci. 2020; 29(1): 62–75. https://doi.org/10.31351/vol29iss1pp62-75
Hamoudi TA. Spectrophotometric assay of salbutamol sulphate in pharmaceutical preparations by coupling with diazotized ρ-bromoaniline. Baghdad Sci J. 2019; 16(3): 610–5 http://dx.doi.org/10.21123/bsj.2019.16.3.0610
Elshafie H, Sadeek S, Camele I, Biological and Spectroscopic Investigations of New Tenoxicam and 1.10-Phenthroline Metal Complexes. Molecules . 2020; 25(5): 1027. https://dx.doi.org/10.3390/molecules25051027
Youssof E, Tammam M, Binding Energy and Photostability of the β-cyclodextrin Encapsulates of Lornoxicam and Tenoxicam drugs: A combined Experimental and Theoretical Study. Egypt J Chem. 2021; 64(1): 425 -430 . https://dx.doi.org/10.21608/EJCHEM.2020.37000.2765
Mhdi AH, Abed SS. Spectrophotometric-Reverse Flow Injection Method for the Determination of Tenoxicam in Pharmaceutical Tablets. Chem Methodol .2023; 7(6): 435-446. https://dx.doi.org/10.22034/CHEMM.2023.391584.1665
Al-Nakeeb MR, Omar TNA. Synthesis, Characterization and Preliminary Study of the Anti-Inflammatory Activity of New Pyrazoline Containing Ibuprofen Derivatives. Iraqi J Pharm Sci. 2019; 28(1): 131–7. https://doi.org/10.31351/vol28iss1pp131-137
Ibrahim SK, Khalaf KD. Optimization and Validation of RP-HPLC-UV/VIS Method for Determination Some Antioxidants in Dry Calyces of Iraqi Hibiscus Sabdraffia Linn , Baghdad Sci J. 2018 ;2(1): 119-26. https://doi.org/10.21123/bsj.2015.12.1.119-126
Grohs L, Cheng L, Cönen S, Haddad BG, Bülow A, Toklucu I., et al. Diclofenac and other non-steroidal anti-inflammatory drugs (NSAIDs) are competitive antagonists of the human P2X3 receptor. Front Pharmacol. 2023; 14:1120360. https://doi.org/10.3389/fphar.2023.1120360
Donatien EA, Amara B, Hadja T, Eric A, Rodrigue KA., Kalifa M, et al. Inhibition Effect of Tenoxicam on Copper Corrosion in HNO3: Experimental Study and DFT. Am J Mater Sci. 2023; 11(1): 7-15. https://dx.doi.org/10.12691/ajmse-11-1-2
Karaca NK, Akyol F. Retrolaminar Block for Post-Operative Analgesia in Patients Undergoing Lumbar Herniectomy Surgery. Haydarpaşa Numune Med J. 2023; 63(2): 148–152. https://dx.doi.org/10.14744/hnhj.2021.48658
Diroh VA, Unaldi RG, Puspasari MW, Aslam MM. NSAID Analysis Using Chromatographic and Spectrophotometric Methods. Asian J Anl Chem. 2023; 1(1): 12-17. https://doi.org/10.53866/ajac.v1i1.269
Neamah AA, Khaleel AMN. Synthesis of New Schiff Base from Antibiotics and Some of Its Metal Complexes with Study Some of Their Applications , Chem Methodol. 2022, 6(5): 372-384. https://doi.org/10.22034/CHEMM.2022.333061.1451
Zhang J, Li Q, Liu Z, Zhao L. Rapid and sensitive determination of Piroxicam by N-doped carbon dots prepared by plant soot. Spectrochim Acta A Mol Biomol Spectrosc. 2023; 299: 122833. https://doi.org/10.1016/j.saa.2023.122833
Alabadi AMD, Abood SC. Microwave-assisted extraction of inulin from jerusalem artichoke and partial acid hydrolyses. Iraqi J Agric Sci. 2020; 51(1): 401–410. https://doi.org/10.36103/ijas.v51i1.939
Fatma A, Sena A. Electroanalytical determination of the antiinflammatory drug tenoxicam in pharmaceutical dosage forms. Turkish J Pharm Sci. 2019; 16(2): 184. https://doi.org/10.4274/tjps.galenos.2018.60783
Gumułka P, Dąbrowska M, Starek M. Microanalysis of selected nsaids using the spectrophotometric method. Eng. 2020; 1(2): 211–21. https://doi.org/10.3390/eng1020014
Mahood AM, Najm NH. Spectrophotometric Estamation of Meloxicam Using Charge Transfer Complex. IOP Conf Ser: Mater Sci Eng. 2019; 571: 012081. https://doi.org/10.1088/1757-899X/571/1/012081
Magdy G, Elmansi H, Belal F, El-Deen AK. Doped carbon dots as promising fluorescent nanosensors: Synthesis, characterization, and recent applications. Curr Pharm Des. 2023; 29(6): 415–44. https://doi.org/10.2174/1381612829666221103124856
Abed RI, Hadi H. Direct determination of piroxicam in pharmaceutical forms using flow injection-spectrophotometry. Bull Chem Soc Ethiop. 2020; 34(1): 13–23. https://dx.doi.org/10.4314/bcse.v34i1.2
Manishankar Y, Annapurna MM. Development and Validation of a New Reverse Phase Liquid Chromatographic Method for the Assay of Tilorone. Acta Sci Pharm Sci. 2021; 5(8) : 59-65. https://doi.org/10.31080/ASPS.2021.05.0767
Wagdy HA, Tarek M, Ahmed A, Gamal M, Elmazar M. A Validated Reverse Phase-Ultra-Performance Liquid Chromatography Method for the Determination of Gemifloxacin Mesylate in Bulk and its Pharmaceutical Preparation. Turkish J Pharm Sci. 2019; 16(1): 8. https://doi.org/10.4274/tjps.04934
Sadikoglu M, Cabuk A. Voltammetric Determination of Tenoxicam in Drug Formulation at Modified Glassy Carbon Electrode. Int J Electrochem Sci. 2019; 14: 4508–19. https://doi.org/10.20964/2019.05.08
Albadri AA, Jihad MI, Radhi ZA. Preparation, characterization, and in-vitro evaluation of tenoxicam-paracetamol cocrystal. Int J Drug Deliv Technol. 2021; 10: 542–6. https://doi.org/10.25258/ijddt.10.4.6
Salman BI, Hassan AI, Hassan YF, Saraya RE. Ultra-sensitive and selective fluorescence approach for estimation of elagolix in real human plasma and content uniformity using boron-doped carbon quantum dots. BMC Chem. 2022; 16(1): 58. https://doi.org/10.1186/s13065-022-00849-3
Tran BT, Tran TN, Tran AMT, Nguyen GCD, Nguyen QTT. Simultaneous Determination of Paracetamol, Ibuprofen, and Caffeine in Tablets by Molecular Absorption Spectroscopy Combined with Classical Least Square Method. Molecules. 2022; 27(9): 2657. https://doi.org/10.3390/molecules27092657
Lin L, Xu L, Kuang H, Xiao J, Xu C. Ultrasensitive and simultaneous detection of 6 nonsteroidal anti-inflammatory drugs by colloidal gold strip sensor. J Dairy Sci. 2021; 104(3): 2529–38. https://doi.org/10.3168/jds.2020-1950
Angelova A, Daniel da Silva AL Hybrid Nanocomposites of Tenoxicam: Layered Double Hydroxides (LDHs) vs. Hydroxyapatite (HAP) Inorganic Carriers, Molecules. 2023; (10): 4035. https://doi.org/10.3390/molecules28104035
El-Maraghy CM, Lamie NT. Three smart spectrophotometric methods for resolution of severely overlapped binary mixture of Ibuprofen and Paracetamol in pharmaceutical dosage form. BMC Chem. 2019: 13(1): 1-8. https://doi.org/10.1186/s13065-019-0618-3
OYENEYİN O, IPİNLOJU N, Nathanael OJO, AKERELE D. Structural modification of ibuprofen as new NSAIDs via DFT, molecular docking and pharmacokinetics studies. Int J Adv Eng Pure Sci. 2021; 33(4): 614–26. https://doi.org/10.7240/jeps.928422
Elias K G, Hilal Y, Development and Validation of a Simple and Sensitive Reverse-Phase High Performance Liquid Chromatographic Method for the Determination of Ibuprofen in Pharmaceutical Suspensions, Baghdad Sci J. 2023; 20(2): 550-559. http://dx.doi.org/10.21123/bsj.2022.6860
Aldewachi H, Omar TA. Development of HPLC Method for Simultaneous Determination of Ibuprofen and Chlorpheniramine Maleate. Sci Pharm. 2022; 90(3): 53. https://doi.org/10.3390/scipharm90030053
Ahmed HY, Dikran SB, Al-Ameri SAH. Determination of ibuprofen in pharmaceutical formulations using differential pulse polarography. Ibn AL-Haitham J Pure Appl Sci. 2019; 32(3): 56–61. https://doi.org/10.30526/32.3.2282
Kovacs ED, Silaghi-Dumitrescu L, Kovacs MH, Roman C. Determination of the Uptake of Ibuprofen, Ketoprofen, and Diclofenac by Tomatoes, Radishes, and Lettuce by Gas Chromatography–Mass Spectrometry (GC–MS). Anal Lett. 2021; 54(1–2): 314–30. https://doi.org/10.1080/00032719.2020.1779278
Makalesi A, Koçak ÖF, Atila A. Determination of Ibuprofen in Pharmaceutical Preparations by UPLC-MS/MS Method. Turkish .J .Nature Sci., 2022; 11(2): 58–63. https://doi.org/10.46810/tdfd.1107889
Susilo S, Pertiwi S, Development and validation of analytical methods for multicomponent crystals of ibuprofen with malic and tartaric acid using spectrophotometry. J Phys Conf Ser. 2022; 2190: 12033. https://doi.org/10.1088/1742-6596/2190/1/012033
Sunitha N, Paul P, Monika A, Sravya D, Sagar P, Jaswanth V, et al. Validation and Development of Metformin obtained from the Extraction of Bougainvillea California Gold Flowers by UV Spectrophotometry, TLC and FTIR. Res Adv Pharm Life Sci. 2022; 4: 2 . http://doi.org/10.18231/j.ijpca.2022.010
Alsamarrai K. Simultaneous Ratio Derivative Spectrophotometric Determination of Paracetamol, Caffeine and Ibuprofen in Their Ternary Form. Baghdad Sci J. 2022. 19(6): 1276. https://doi.org/10.21123/bsj.2022.6422
Anuar N, Sabri AH, Effendi TJB, Hamid KA. Development and characterisation of ibuprofen-loaded nanoemulsion with enhanced oral bioavailability. Heliyon. 2020; 6(7): e04570. https://doi.org/10.1016/j.heliyon.2020.e04570
Hundscheid T, Onland W, Kooi EMW, Vijlbrief DC, de Vries WB, Dijkman KP, et al. Expectant management or early ibuprofen for patent ductus arteriosus. N Engl J Med. 2023; 388(11): 980–90. https://doi.org/10.1056/NEJMoa2207418
Javaid J, Fatima W. Controlled Release of Ibuprofen by Using Morphologically Modified Mesoporous Silica. Adv Mater Sci Eng. 2022; 8: 1-7. https://doi.org/10.1155/2022/6376915
El-Sayed HM, Abdellatef HE, Hendawy HAM, El-Abassy OM, Ibrahim H. DoE-enhanced development and validation of eco-friendly RP-HPLC method for analysis of safinamide and its precursor impurity: Microchem J. 2023; 190: 108730. https://doi.org/10.1016/j.microc.2023.108730
Abed SS. Spectrophotometric and Reverse Flow Injection Method Determination of Nitrazepam in Pharmaceuticals Using O-Coumaric Acid as a New Chromogenic Reagent. , Baghdad Sci J. 2020; 17 (1): 0265-0265. https://doi.org/10.21123/bsj.2020.17.1(Suppl.).0265.
47. Al-Salman HNK, Jasim EQ, Hussein HH, Shari H. Theophylline Determination in Pharmaceuticals Using a Novel High-performance Liquid Chromatographic Process. Neuroquantology . 2021; 19(7): 196–208. https://doi.org/10.14704/nq.2021.19.7.NQ21103