Odd Fibonacci edge irregular labeling for some trees obtained from subdivision and vertex identification operations

Main Article Content

M. Uma Devi
https://orcid.org/0000-0002-1566-9618
M. Kamaraj
S. Arockiaraj

Abstract

Let G be a graph with p vertices and q edges and  be an injective function, where k is a positive integer. If the induced edge labeling   defined by for each is a bijection, then the labeling f is called an odd Fibonacci edge irregular labeling of G. A graph which admits an odd Fibonacci edge irregular labeling is called an odd Fibonacci edge irregular graph. The odd Fibonacci edge irregularity strength ofes(G) is the minimum k for which G admits an odd Fibonacci edge irregular labeling. In this paper, the odd Fibonacci edge irregularity strength for some subdivision graphs and graphs obtained from vertex identification is determined.

Article Details

How to Cite
1.
Odd Fibonacci edge irregular labeling for some trees obtained from subdivision and vertex identification operations. Baghdad Sci.J [Internet]. 2023 Mar. 1 [cited 2025 Jan. 19];20(1(SI):0332. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8420
Section
article

How to Cite

1.
Odd Fibonacci edge irregular labeling for some trees obtained from subdivision and vertex identification operations. Baghdad Sci.J [Internet]. 2023 Mar. 1 [cited 2025 Jan. 19];20(1(SI):0332. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/8420

References

West DB. Introduction to Graph Theory. 2nd edition. India: Prentice – Hall; 2001. p. 260. https://athena.nitc.ac.in/summerschool/Files/West.pdf

Al-Harere MN, Mitlif RJ, Sadiq FA. Variant Domination Types for a Complete H-ary Tree. Baghdad Sci J. 2021; 18(1(Suppl.)): 797-802. https://doi.org/10.21123/bsj.2021.18.1(Suppl.).0797

Omran AA, Haneen H O. Hn Domination in Graphs. Baghdad Sci J. 2019; 16(1(Suppl.)): 242-247. https://doi.org/10.21123/bsj.2019.16.1(Suppl.).0242

Rosa A. On Certain Valuations of the Vertices of a Graph. Theory of Graphs International Symposium, Rome, 1966. USA: Gordon & Breach Publishers, Inc; 1967. pp. 349 - 355. http://www.cs.columbia.edu/~tim/teaching/cs4203/Rosa-GracefulLabelings.pdf

Kalyan S, Kempepatil R. Note on Advanced Labeling and Fibonacci Graceful graphs. Pramana Res J. 2019; 9(5): 295 – 317. https://www.pramanaresearch.org/gallery/prj-p810.pdf

Karthikeyan S, Navanaeethakrishnan S, Sridevi R. Total Edge Fibonacci Irregular Labeling of Some Star Graphs. Int J Math Soft Comput. 2015; 5(1): 73-78. https://oaji.net/articles/2017/296-1504962802.pdf

Amutha S, Uma Devi M. Total Edge Fibonacci Irregular labeling for Fan, Wheel and Umbrella Graph. J Comp Math Sci. 2019; 10 (12): 1654-1664. http://www.compmath-journal.org/dnload/S-Amutha-and-M-Uma-Devi-/CMJV10I12P1654.pdf

Chitra G, Priya J, Vishnupriya Y. Odd Fibonacci Mean Labeling of Some Special Graphs. Int J Math. TrendsTechnol . 2020; 66 (1): 115 - 126. http://www.ijmttjournal.org/Volume-66/Issue-1/IJMTT-V66I1P515.pdf

Baskaro SET, Simanjuntak R. On the Vertex Irregular labeling for Subdivision for Trees. Australas J Comb. 2018; 71(2): 293-302. https://ajc.maths.uq.edu.au/pdf/71/ajc_v71_p293.pdf

Uma Devi M, Kamaraj M, Arockiaraj S. Odd Fibonacci Edge Irregular Labeling for Some Simple Graphs. J Algebr Stat. 2022; 13(3): 1230-1238. https://www.publishoa.com/index.php/journal/article/view/742

Gallian JA. A Dynamic Survey of Graph Labeling. 25th edition. Electron J Comb. 2022; 623 pages. https://www.combinatorics.org/ojs/index.php/eljc/article/viewFile/DS6/pdf