Generalised Henstock - Kurzweil Integral with Multiple Point
Main Article Content
Abstract
This paper deals with a new Henstock-Kurzweil integral in Banach Space with Bilinear triple n-tuple and integrator function Ψ which depends on multiple points in partition. Finally, exhibit standard results of Generalized Henstock - Kurzweil integral in the theory of integration.
Received 21/1/2023
Revised 27/2/2023
Accepted 28/2/2023
Published 4/3/2023
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Das AG, Gokul S. An Equivalent Denjoy Type Definition of the Generalise Henstock - Stieltjes Integral. Bull Math Acad Sinica. 2002; 30(1): 27 - 49.
Das AG, Goku Sl. Ordinary Differential Equations and the HS_k Integral. Bull Cal Math Soc. 2001; 93: 269 - 280.
Maly J, Kuncova K, Praha. On a Generalization of Henstock – Kurzweil Integrals. Math Bohem. 2019; 144(4): 1 – 30. https://doi.org/10.21136/MB.2019.0038-19
Mahanta S, Ray S. On the Generalization of Henstock – Kurzweil Fourier Transform. arXiv:2202.10394 [math.CA]. 21 Feb 2022; 1 – 14. https://doi.org/10.48550/arXiv.2202.10394
Thange TG, Gangane SS. Henstock – Kurzweil Integral for Banach Space Valued Functions. Math Stat. 2022; 10(5): 1038 – 1049. https://doi.org/10.13189/ms.2022.100515
Ajeel YI, Kadhim SN. Some Common Fixed Point Theorem of Four Weakly Compatible Mappings in Metric Spaces. Bagdad Sci J. 2021; 18(3): 543 – 546. https://doi.org/10.21123/bsj.2021.18.3.0543
Cunanan AF, Benitez J. Simple Properties and Existence Theorem for the Henstock–Kurzweil–Stieltjes Integral of Functions Taking Values on C[a, b] Space-valued Functions. Eur J Pure Appl Math. 2020; 13(1): 130 – 143. https://doi.org/10.29020/nybg.ejpam.v13i1.3626
Kaliaj SB. The New Extensions of the Henstock – Kurzweil and the Mcshane Integrals of Vector Valued Functions. Mediterr J Math. 2018; 15: 22. https://doi.org/10.1007/s00009-018-1067-2
Hussein LH, Abed SS. Fixed Point Theorems in General Metric Space with an Application. Baghdad Sci J. 2021; 18(1(Suppl.)). https://doi.org/10.21123/bsj.2021.18.1(suppl.).0812