Mechanical Design Procedure and Modelling for 8-DOF Upper Limb Rehabilitation Robotic
DOI:
https://doi.org/10.21123/bsj.2024.9935Keywords:
Anthropometric, Finite element analysis FEA, Robotic, Upper limp exoskeletons, Von mises stress analysis.Abstract
Treating muscular medical injuries that impede movement of the human body has become of wide interest because of the importance it holds for improving the lives of people who are exposed to this type of injury. During the past years, several studies have attempted to create a robot that works to rehabilitate the injured upper limbs of the human body. In this research, a curriculum for the procedures will be developed for designing a medical robot by displaying the volumetric tolerances for this robot according to the age and weight of the injured person and the weight and volumetric constants for each part of the robot to be used in the mathematical model that is used to move this robot. Then the design of a robot with 8 DOF will be presented and examined using finite element analysis (FEA) in order to assess its ability to withstand and function in accordance with the load exerted by human weight. The upper limb exoskeleton model is subjected to analysis utilizing the Ansys® software, which facilitates the execution of von Mises stress analysis.
Received 12/10/2024
Revised 24/02/2024
Accepted 26/02/2024
Published Online First 20/12/2024
References
Al-temeemi Mi. Rmsma. Rover Multi-purpose Surveillance Robotic System. BSJ. 2020 Sep 8; 17(3 (Suppl.)): 1049-1057. http://dx.doi.org/10.21123/bsj.2020.17.3(Suppl.).1049
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. heart disease and stroke statistics—2019 update: a report from the AHAC. 2019 Mar 5; 139(10): e56-28. https://doi.org/10.1161/CIR.0000000000000659
Qassim HM, Wan Hasan WZ. A review on upper limb rehabilitation robots. Appl. Sci. 2020 Oct 6; 10(19): 6976-6994. https://doi.org/10.3390/app10196976
Martinez C, Tavakoli M. Learning and reproduction of Therapist’s semi-periodic motions during robotic rehabilitation. Robotica. 2020 Feb; 38(2): 337-349. https://doi.org/10.1017/S0263574719000651
Chang LR, Anand P, Varacallo M. Anatomy, shoulder and upper limb, glenohumeral joint. In Stat. Pe. 2022 Aug 8. StatPearls Publishing.
Lee SH, Park G, Cho DY, Kim HY, Lee JY, Kim S, et al. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Sci Rep. 2020 Feb 4; 10(1): 1806.
Aprile I, Cruciani A, Germanotta M, Gower V, Pecchioli C, Cattaneo D, Vannetti F, Padua L, Gramatica F. Upper limb robotics in rehabilitation: an approach to select the devices, based on rehabilitation aims, and their evaluation in a feasibility study. Appl. Sci. 2019 Sep 18;9(18):3920 https://doi.org/10.1097/NPT.0000000000000295
Aprile I, Germanotta M, Cruciani A, Loreti S, Pecchioli C, Cecchi F, et al. Upper limb robotic rehabilitation after stroke: a multicenter, randomized clinical trial. JNPT 2020 Jan 1;44(1):3-14.https://doi.org/10.1097/NPT.0000000000000295
Islam MR, Assad-Uz-Zaman M, Brahmi B, Bouteraa Y, Wang I, Rahman MH. Design and development of an upper limb rehabilitative robot with dual functionality. Mic.mach. 2021 Jul 24;12(8):870-900. https://doi.org/10.3390/mi12080870
Liu H, Wang Y. Optimization Design of Support Arm of an Upper Limb Rehabilitation Robot. IOP Conf Ser.: Mater Sci Eng. 2019; 688: 033048. https://doi.org/10.1088/1757-899X/688/3/033048
Gnasso R, Palermi S, Picone A, Tarantino D, Fusco G, Messina MM, et al. Robotic-Assisted Rehabilitation for Post-Stroke Shoulder Pain: A Systematic Review. Sen. 2023 Oct 3; 23(19): 8239. https://doi.org/10.3390/s23198239
Centers for Disease Control and Prevention. CDC - Anthropometry – NIOSH. WSHT. CDCP. 2019.
American Anthropological Association. What is anthropology? . AAA. 2023.
Gull MA, Bai S, Bak T. A review on design of upper limb exoskeletons. Rob. 2020 Mar 17; 9(1): 16-51. https://doi.org/10.3390/robotics9010016
Bai S, Li X, Angeles J. A review of spherical motion generation using either spherical parallel manipulators or spherical motors. Mech Mach Theory. 2019 Oct 1; 140: 377-388. https://doi.org/10.1016/j.mechmachtheory.2019.06.012
Contini R. Body segment parameters, Part II. Arti limbs. 1972; 16(1): 1-9.
Contini R, Drillis RJ, Bluestein M. Determination of body segment parameters. HF. 1963 Oct;5(5):493-504. https://doi.org/10.1177/001872086300500508
Flores-Ortiz R, Malta DC, Velasquez-Melendez G. Adult body weight trends in 27 urban populations of Brazil from 2006 to 2016: a population-based study. Plos.one. 2019 Mar 6; 14(3): e0213254. https://doi.org/10.1371/journal.pone.0213254
Zeiaee A, Soltani-Zarrin R, Langari R, Tafreshi R. Kinematic design optimization of an eight degree-of-freedom upper-limb exoskeleton. Robotica. 2019 Dec; 37(12): 2073-86. https://doi.org/10.1017/S0263574719001085
González-Mendoza A, Quiñones-Urióstegui I, Salazar-Cruz S, Perez-Sanpablo AI, López-Gutiérrez R, Lozano R. Design and implementation of a rehabilitation upper-limb exoskeleton robot controlled by cognitive and physical interfaces. J Bionic Eng. 2022 Sep; 19(5): 1374-1391. https://doi.org/10.1007/s42235-022-00214-z
McDowell MA, Fryar CD, Ogden CL. Anthropometric reference data for children and adults: United States, 1988-1994. VHS. Series 11, Data from the NHS. 2009 Apr 1(249): 1-68.
Copaci D, Cano E, Moreno L, Blanco D. New design of a soft robotics wearable elbow exoskeleton based on shape memory alloy wire actuators. Appl. BioMech. Sep 5. 2017; Article ID 1605101: 11 pages . https:/doi.org/10.1155/2017/1605101
Song P, Yu Y, Zhang X. A tutorial survey and comparison of impedance control on robotic manipulation. Robotica. 2019 May; 37(5): 801-836. https://doi.org/10.1017/S0263574718001339
Tang L, Liu G, Yang M, Li F, Ye F, Li C. Joint design and torque feedback experiment of rehabilitation robot. Adv Mech Eng. 2020 May; 12(5): 1687814020924498.
Sanchez-Villamañan MD, Gonzalez-Vargas J, Torricelli D, Moreno JC, Pons JL. Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J Neuroeng Rehabil . 2019 Dec; 16(1): 1-6. https://doi.org/10.1186/s12984-019-0517-9
Curcio EM, Carbone G. Mechatronic design of a robot for upper limb rehabilitation at home. J. Bionic Eng. 2021 Jul; 18(4): 857-871.https://doi.org/10.1007/s42235-021-0066-3
Pisla D, Pop N, Gherman B, Ulinici I, Luchian I, Carbone G. Efficient FEM Based Optimization of a Parallel Robotic System for Upper Limb Rehabilitation. In NAM, MTR: MTM & Robotics. 2020;(pp. 517-532). Springer International Publishing. https://doi.org/10.1007/978-3-030-60076-1_47
Tang B, Jiang L, Wang Z, Ke M, Sun Y. Upper Limb Rehabilitation Electromechanical System for Stroke Patients. Proceedings of ICCSIA 2020; 1: 283-289. Springer International Publishing .https://doi.org/10.1007/978-3-030-43306-2_40
Liu B, Sha L, Huang K, Zhang W, Yang H. A topology optimization method for collaborative robot lightweight design based on orthogonal experiment and its applications. Int J Adv.Robot. 2022 Jan 20; 19(1): 17298814211056143. https://doi.org/10.1177/17298814211056143
CRC press. Landel RF, Nielsen LE. Mechanical properties of polymers and composites. CRC press; 1993 Dec 14.
Downloads
Issue
Section
License
Copyright (c) 2024 Mohanad Al-Asady , Ayad Murad Takhakh
This work is licensed under a Creative Commons Attribution 4.0 International License.