Preparation and characterization of NiONPS sensor Prepared by Different Q-switched Nd: YAG Laser parameter: energy pulse and wavelength
DOI:
https://doi.org/10.21123/bsj.2024.9984Keywords:
Gas sensor, Pulse Laser Deposition, Nickel Oxide, NO2 gas, Third Harmonic GenerationAbstract
In this research, a thin film of nickel oxide was produced by a Q-switched Nd:YAG fundamental laser and third harmonic generation on the porous silicon substrate at different pulse energies. To explore how laser pulse energy and wavelength affect Nickel Oxide thin film characteristics and are used for gas sensor applications. In this investigation, an Nd: YAG laser beam with a wavelength of 1064 and 355nm, 400 pulses, and a repetition rate of 3 Hz was utilized to deposit NiO on porous silicon substrates. The crystal structure of the deposited films was investigated using X-ray diffraction (XRD). The UV-visible spectrum is used to determine the absorption coefficient and optical energy gap, and well as research sensory characteristics. These NiO NPs have a polycrystalline structure and the preferred orientation of <200> for NiO and <100> for PS, according to structural testing. The increase in laser pulse energy correlates favorably with grain size. The optical tests reveal a reduction in wavelength with a rise in the optical energy gap, which is a sign that quantum confinement has formed as an effect of the production of NiO NPs. The impact of temperature variations on the sensitivity, recovery time, and response time of a NO2 gas sensor built from prepared samples was investigated. The maximum sensitivity for NO2 gas at a temperature of 25°C was 134% 190 ppm at 1064 nm and 70% 32 ppm at 355 nm for NiO NPs.
Received 18/10/2023
Revised 12/03/2024
Accepted 14/03/2024
Published Online First 20/08/2024
References
Hunter G W, Akbar Sh , Bhansali Sh, Daniele M, Erb P D, Johnson K et al. Editors' Choice—Critical Review—A Critical Review of Solid State Gas Sensors. ECS Sens Plus. 2020; 167(3): 037570. https://doi.org/10.1149/1945-7111/ab729c
Peng Li, Lin Lü. Evaluating the Real-World NOx Emission from a China VI Heavy-Duty Diesel Vehicle. Appl Sci. 2021; 11(3): 1335. https://doi.org/10.3390/app11031335
Harb N H , Falah MuAtlak F A-H.Gas sensing characteristics of WO3NPs sensors fabricated by pulsed laser deposition on PS n type. J Opt 2023; 52 (1): 323-331. https://doi.10.1007/s12596-022-00877-1
Ch, Luo Y, Debliquy M. Room temperature conductive type metal oxide semiconductor gas sensors for NO2 detection. Sens Actuators A Phys. 2019; 289(15): 118-133. https://doi.org/10.1016/j.sna.2019.02.027
Huang Z, Wei Z, Tang M, Yu Sh, Jiao H. Chap 3 - Biological treatments of mercury and nitrogen oxides in flue gas: biochemical foundations, technological potentials, and recent advances. Advances in Applied Microbiology. 2021; 116: 133-168. https://doi.org/10.1016/bs.aambs.2021.04.001
Licznerski B .Thick-film gas microsensors based on tin dioxide. Bull. Pol Ac: Tech.2004; 52(1): 37-42.
Nada K. Abbas,Isam M. Ibrahim,Manal A. Saleh. Characteristics of MEH-PPV/Si and MEH-PPV/PS Heterojunctions as NO2 Gas Sensors. Silicon. 2018; 10(4): 1345–1350. https://doi.org/10.1007/s12633-017-9610-5
Chen Y L, Huang Y J, Yeh M H, Fan M S, Lin Ch T, Chang Ch Ch. Nanoflower-like P-doped Nickel Oxide as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells. Nanomaterials 2022; 12(22): 4036. https://doi.org/10.3390/nano12224036
Zijun Hu, Chen Da, Yang P, Yang L, Yang L, Qin L, et al.. Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance. Appl Surf Sci. 2018; 441(31): 258-264. https://doi.org/10.1016/j.apsusc.2018.01.236
Akinkuade Sh T, Meyer W E, Nel J M. Effects of thermal treatment on structural, optical and electrical properties of NiO thin films. Physica B. 2019; 575: 411694. https://doi.org/10.1016/j.physb.2019.411694
Prajesh R, Goyal V, Nahid M, Saini V, Nahid M. Saini V, et al. .Nickel oxide (NiO) thin film optimization by reactive sputtering for highly sensitive formaldehyde sensing. Sens Actuators B Chem. 2020; 318: 128166. https://doi.org/10.1016/j.snb.2020.128166
Bonomo M. Synthesis and characterization of NiO nanostructures: a review. J Nanopart Res. 2018; 20(8): 1-26. https://doi.org/10.1007/s11051-018-4327-y
Tatyana Ivanova T, Harizanova A, Shipochka M, Vitanov P. Nickel Oxide Films Deposited by Sol-Gel Method: Effect of Annealing Temperature on Structural, Optical, and Electrical Properties. Materials. 2022; 15(5): 1742. https://doi.org/10.3390/ma15051742
López-Lugo V H, Hipólito MG, Gómez AR, Alonso-Huitrón JC. Fabrication of Li-Doped NiO Thin Films by Ultrasonic Spray Pyrolysis and Its Application in Light-Emitting Diodes. Nanomaterials (Basel). 2023; 13(1): 197. https://doi.org/10.3390/nano13010197
Kumar Yadav S K, Dhar S. Very thin (111) NiO epitaxial films grown on c-sapphire substrates by pulsed laser deposition technique. Semicond Sci Technol. 2021; 36(5):8. https://doi.org/10.1088/1361-6641/abed8e
Mazhir S N, Harb N H. Influence of concentration on the structural, optical and electrical properties of TiO2: CuO thin film Fabricate by PLD. J Appl Phys. 7(6): 14-21. https://doi.org/10.9790/4861-07621421
Dalya K. Naser , Ahmed K. Abbas, Kadhim A. Aadim, Zeta Potential of Ag, Cu, ZnO, CdO and Sn Nanoparticles Prepared by Pulse Laser Ablation in Liquid Environment. Iraqi J Sci. 2020; 61( 10): 2570-2581. https://doi.org/10.24996/ijs.2020.61.10.13
Mutlak F A-H, Jamal R K, Ahmed AF. Pulsed Laser Deposition of Tio2 Nanostructures for Verify the Linear and Non-Linear Optical Characteristics. Iraqi J Sci. 2021; 62(2): 517-525. https://doi.org/10.24996/ijs.2021.62.2.18
Mahdi1 Sh S, Aadim K A, Khalaf M A. New Spectral Range Generations from Laser-plasma Interaction. Baghdad Sci J. 2021; 18(4): 1328-1337. http://dx.doi.org/10.21123/bsj.2021.18.4.1328
Badica P, Togano K, Awaji S and Watanabe K.Growth of superconducting MgB 2 films by pulsed-laser deposition using a Nd–YAG laser. Supercond Sci Technol. 2006; 19(2): 242. https://doi.org/10.1088/0953-2048/19/2/016
Oguz Er A, Ren W Elsayed-Ali H E. Low temperature epitaxial growth of Ge quantum dot on Si (100)-(2×1) by femtosecond laser excitation. Appl Phys. 2011; 98(1): 013108. https://doi.org/10.1063/1.3537813
Amarnath.M, Gurunathan.K. Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature. Sens Actuators B. 2018; 268 : 223–231. https://doi.org/10.1016/j.jallcom.2020.157584
Peipei Li, Changyan Cao, Qikai Shen, Bin Bai, Hongqiang Jin, Jia Yu, et al. Cr-doped NiO nanoparticles as selective and stable gas sensor for ppb-level detection of benzyl mercaptan. Sens Actuators B. 2021; 339: 129886. https://doi.org/10.1016/j.snb.2021.129886
Huey-Ing C, Hsiao C, Wei-Cheng Ch, Ching-Hong Ch, Chou T, Liu I, et al. Characteristics of a Pt/NiO thin film-based ammonia gas sensor. Sens Actuators B 2018 ; 256: 962-967. https://doi.org/10.1016/j.snb.2017.10.032
Abdul-Ameer H J , AL-.Hilli M F , Khalaf M K. Comparative NO2 Sensing Characteristics of SnO2:WO3 Thin Film Against Bulk and Investigation of Optical Properties of the Thin Film. Baghdad Sci J. 2018; 15(2): 227-233. http://dx.doi.org/10.21123/bsj.2018.15.2.0227
Abbas N K, Abdulameer A F, Ali R M, Alwash S M. The Effect of Heat Treatment on Optical Properties of Copper (II) Phthalocyanine Tetrasulfonic Acid Tetrasodium Salt (CuPcTs) Organic Thin Films. Silicon, 2019; 11(2): 843–855. https://doi.org/10.1007/s12633-018-9874-4
Harb N H, The structure and optical properties of Ag doped CdO thin film prepared by pulse laser deposition (PLD), Baghdad Sci J. 2018; 15 (3) : 300–303. https://doi.org/10.21123/bsj.2018.15.3.0300
Nayef U, Kamel R. Bi2O3 nanoparticles ablated on porous silicon for sensing NO2 gas. Optik. 2020; 208: 164146. https://doi.org/10.1016/j.ijleo.2019.164146
Kannan S, Rieth L, Solzbacher F. NO x sensitivity of In 2O 3 thin film layers with and without promoter layers at high temperatures. Sens Actuators B: Chem. 2010; 149: 8-19. http://dx.doi.org/10.1016/j.snb.2010.06.042
Downloads
Issue
Section
License
Copyright (c) 2024 Noha. H. Harb
This work is licensed under a Creative Commons Attribution 4.0 International License.