Photocatalytic Degradation of Methylene Blue Dye Using Zinc Oxide Nanoparticles Prepared by Green Synthesized

Authors

  • Anwar Ali Baqer Department of Physics, College of Science for Women, University of Baghdad, Baghdad, Iraq https://orcid.org/0000-0001-8033-8826
  • Nadia Jasim Ghdeeb Department of Physics, College of Science, University of Mustansyriah, Baghdad, Iraq https://orcid.org/0000-0003-0741-9587
  • Nedal Ali Hussain Department of Physics, College of Science, University of Mustansyriah, Baghdad, Iraq

DOI:

https://doi.org/10.21123/bsj.2024.10735

Keywords:

Chemical synthesis, Green synthesis, Nanoparticles, Photocatalytic degradation, ZnO

Abstract

 

 This study describes the environmentally friendly synthesis of zinc oxide nanoparticles (ZnO-NPs) using cinnamon extract, bay leaf extract, and chemical techniques. Due to its cost-effectiveness and avoidance of harmful ingredients, the green synthesis strategy for producing nanoparticles has significant advantages over physical and chemical procedures. The XRD data demonstrated the production of a hexagonal wurtzite structure, while the SEM investigations demonstrated a spherical shape and average size (21.49, 25.26) nm for ZnO NPs synthesized by cinnamon extract, bay leaf extract, and chemical techniques, respectively. The synthesized ZnO NPs demonstrate noteworthy photocatalytic efficacy in the breakdown of methylene blue dye under direct sunlight exposure. Therefore, this research signifies a significant advancement in the progress of a sustainable photocatalyst to eliminate harmful dyes from water.

References

Sardar S, Munawar T, Mukhtar F, Nadeem MS, Khan SA, et al.Fullerene trigged energy storage and photocatalytic ability of La2O3-ZnO@C60 core-shell nanocomposite: Mater Sci Eng B.2023; 288: 116151. https://doi.org/10.1016/j.mseb.2022.116151

Abbas NK, Shanan ZJ, Mohammed .H. Physical properties of Cu doped ZnO nanocrystiline thin films, Baghdad Sci J. 2022; 19(1): 217–224. http://dx.doi.org/10.21123/bsj.2022.19.1.0217

Hussain N A, Dakhil O A, Abbas L Y. Evaluation of the effect of Ag-doping ZnO microstructure on optical and structural properties and application in photocatalytic properties. MJS. 2023; 34 (3): 108-114. http://doi.org/10.23851/mjs.v34i3.1291

Abbas NK, Abdulameer AF, Ali RM, Alwash SM. The Effect of Heat Treatment on Opticalproperties of Copper (II) Phthalocyanine Tetrasulfonic Acid Tetrasodium Salt (CuPcTs) Organic Thin Films. Silicon. 2019; 11(2): 843–855. https://doi.org/10.1007/s12633-018-9874-4

Nadeem MS, Munawar T, Mukhtar F, Rabbani AW, Khan SA, et al. Synergistic photocatalytic properties of fullerene (C60) anchored V/Cu dual-doped NiO nanocomposites for water disinfection. Mater Sci Eng B .2023; 273: 116705. https://doi.org/10.1016/j.mseb.2023.116705 .

Moezzi A, McDonagh AM, Cortie MB. Zinc oxide particles: Synthesis, properties and applications. J. Chem Eng J. 2012; 185: 1-22. https://doi.org/10.1016/j.cej.2012.01.076

Azlina HN, Hasnidawani JN, Norita H, Surip SN. Synthesis of SiO2 nanostructures using the sol-gel method. Acta Phys Pol A. 2016; 129(4): 842–844 I. https://doi.org/10.12693/APhysPolA.129.842

Raoufi D. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew Energy. 2013; 50: 932–937. https://doi.org/10.1016/j.renen e.2012.08.076

Ashkarran AA, Irajizad A, Mahdavi SM, Ahadian MM. ZnO nanoparticles prepared by the electrical arc discharge method in water. Mater Chem Phys. 2009; 118(1): 6–8. https://doi.org/10.1016/j.match empathys.2009.07.002

Ejsmont A, Goscianska J. Hydrothermal Synthesis of ZnO Superstructures with Controlled Morphology via Temperature and PH Optimization. Materials. 2023; 16(4): 1641. https://doi.org/10.3390/ma16041641

Tarasenka NN, Kornev VG, Nedelko MI, Maltanova HM, Poznyak SK, Tarasenko NV. Electric field-assisted laser ablation fabrication and assembly of zinc oxide/carbon nanocomposites into hierarchical structures for supercapacitor electrodes. Nanoscale. 2024; 16(1): 322-334. https://doi.org/10.1016/j.apsusc.2023.158907

Rai RS, Bajpai V, Khan MI, Elboughdiri N, Shanableh A, et al. An eco-friendly approach on green synthesis, bio-engineering applications, and future outlook of ZnO nanomaterial: A critical review. Environ Res. 2023; 221: 114807. https://doi.org/10.1016/j.envres.2022.114807

Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. Green' synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology. 2018; 16: 84. https://doi.org/10.1155/2010/745120

Al-Zahrani SA, Patil MB, Mathad SN, Patil AY, Otaibi AA, et al. Photocatalytic Degradation of Textile Orange 16 Reactive Dye by ZnO Nanoparticles Synthesized via Green Route Using Punica Granatum Leaf Extract. Crystals. 2023; 13(2): 172. https://doi.org/10.3390/cryst13020172

Hassan SS, El Azab WI, Ali HR, Mansour MS.Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv Nat Sci Nanosci Nanotechnol. 2015; 6(4): 045012. https://doi.org/10.1088/2043-6262/6/4/04501

Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process. 2015; 32: 55–61. https://doi.org/10.1016/j.mssp.2014.12.053

Davar F, Majedi A, Mirzaei A. Green synthesis of ZnO nanoparticles and their application in the degradation of some dyes. J Am Ceram Soc. 2015; 98(6): 1739–1746. https://doi.org/10.1111/jace.13467

Faisal S, Jan H, Shah SA, Shah S, Khan A, et al. A Green synthesis of zinc oxide ZnO) nanoparticles using aqueous fruit extractsof Myristica fragrans: their characterizations and biological and environmental applications. ACS Omega. 2021; 6(14): 9709–9722. https://doi.org/10.1021/acsomega.1c00310

Alharthi FA, Alghamdi AA, Alothman AA, Almarhoon ZM, Alsulaiman MF. Green synthesis of ZnO nanostructures using Salvadora Persica leaf extract: applications for photocatalytic degradation of methylene blue dye. Crystals. 2020; 10(6): 441. http://dx.doi.org/10.3390/cryst10060441

Nadeem MS, Munawar T, Mukhtar F, Rabbani AW, Ur Rehman N, et al. Facile synthesis of PANI and rGO supported Y/Pr co-doped ZnO: boosted solar light-driven photocatalysis. Appl Phys A. 2023; 129(6): 450. https://doi.org/10.1007/s00339-023-06701-2

Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2): 71-79. https://doi.org/10.1016/j.jpha.2015.11.005

Rahman MM, Islam MB, Biswas M, Khurshid Alam AH. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes. 2015; 8(1): 1–9. http://doi:10.1186/s13104-015-1618-6

Yung MMN, Mouneyrac C, Leung KMY. Ecotoxicity of zinc oxide nanoparticles in the marine environment. Encyclo. Nanotech. 2014; 1–17. http://doi:10.1007/978-94-007-6178-0_100970-1

Akhil K, Khan SS. Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems. J Photochem Photobiol B Biol. 2016; 167: 136-149. https://doi.org/10.1016/j.jphotobiol.2016.12.010

Singh K, Singh J, Rawat M. Green synthesis of zinc oxide nanoparticles using Punica Granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Appl Sci. 2019; 1: 1-8. https://doi.org/10.1007/s42452-019-0610-5

Jayachandran A, Aswathy TR, Nair AS. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem Biophys Rep. 2021; 26: 100995. https://doi.org/10.1016/j.bbrep.2021.100995

Ghdeeb NJ, Mohammed AH, Majeed AM. The Anti-proliferative Activity of Factory Wastes Nanoparticles against Uterus Cancer Cells: In-vitro Study. Nano Biomed Eng. 2022; 14(2): 149-158. https://doi.org/10.5101/nbe.v14i2.p149-158

Sirdeshpande KD, Sridhar A, Cholkar KM, Selvaraj R. Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of Calliandra haematocephala and their photocatalytic degradation of malachite green dye. Appl. Nanosci. 2018; 8: 675-683. https://doi.org/10.1016/j.arabjc.2014.09.006

Chen C, Yu B, Liu P, Liu J, Wang L. Investigation of nano-sized ZnO particles fabricated by various synthesis routes. J Ceram Process Res. 2011; 12(4): 420-425. http://dx.doi.org/10.36410/jcpr.2011.12.4.420

Lu J, Batjikh I, Hurh J, Han Y, Ali H, et al. Photocatalytic degradation of methylene blue using biosynthesized zinc oxide nanoparticles from bark extract of Kalopanax septemlobus. Optik. 2019; 182: 980-985. https://doi.org/10.1016/j.ijleo.2018.12.016

Nusseif AD, Hussain NA, Sabry RS. Preparation and Wettability of Zinc Oxide Nanostructures by Oxidation of Zinc Foil in Hot Water. Iraqi J Appl Phys. 2023; 19 (4A): 67-72. https://www.iasj.net/iasj/download/4824e968123f3363.

Carmona-Carmona AJ, Mora ES, Flores JI, Márquez-Beltrán C, Castañeda-Antonio MD, et al. Photocatalytic Degradation of Methylene Blue by Magnetic Opal/Fe3O4 Colloidal Crystals under Visible Light Irradiation. Photochem. 2023; 3: 390–407. https://doi.org/10.3390/photochem3040024

Downloads

Issue

Section

article

How to Cite

1.
Photocatalytic Degradation of Methylene Blue Dye Using Zinc Oxide Nanoparticles Prepared by Green Synthesized. Baghdad Sci.J [Internet]. [cited 2025 Jan. 26];22(6). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/10735