التحلل الضوئي لصبغة الميثيلين الزرقاء باستخدام جسيمات أكسيد الزنك النانوية المحضرة بالطريقة الخضراء

المؤلفون

  • Anwar Ali Baqer قسم الفيزياء، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق. https://orcid.org/0000-0001-8033-8826
  • Nadia Jasim Ghdeeb قسم الفيزياء، كلية العلوم، جامعة المستنصرية، بغداد، العراق. https://orcid.org/0000-0003-0741-9587
  • Nedal Ali Hussain قسم الفيزياء، كلية العلوم، جامعة المستنصرية، بغداد، العراق.

DOI:

https://doi.org/10.21123/bsj.2024.10735

الكلمات المفتاحية:

التخليق الكيميائي، التخليق الأخضر، الجسيمات النانوية، التحلل الضوئي أكسيد الزنك

الملخص

 

 

تتمتع طريقة التوليف الأخضر لإنتاج الجسيمات النانوية بالعديد من المزايا مقارنة بالطرق الفيزيائية والكيميائية بسبب تجنبها للمواد الخطرة وفعاليتها من حيث التكلفة. تصف هذه الدراسة التوليف الصديق للبيئة لجسيمات أكسيد الزنك النانوية (ZnO-NPs) باستخدام مستخلص القرفة، ومستخلص ورق الغار، والتقنيات الكيميائية. تم تحليل الخصائص المورفولوجية والهيكلية والبصرية لجسيمات أكسيد الزنك الخضراء النانوية من خلال استخدام المجهر الإلكتروني الماسح  (FESEM)، ومطياف الأشعة السينية المشتتة للطاقة (EDX)، وتقنيات حيود الأشعة السينية (XRD). يكشف نمط حيود الأشعة السينية (XRD) أن جسيمات أكسيد الزنك النانوية (ZnO-NPs) تمتلك بنية بلورية، بمتوسط ​​قطر يبلغ 20 نانومتر. تشير نتائج فحص المجهر الإلكتروني الماسح (FESEM) إلى أن جسيمات أكسيد الزنك النانوية (NPs) لها شكل كروي، بأحجام تتراوح بين 10 و30 نانومتر. تُظهر الجسيمات النانوية لأكسيد الزنك المُصنّعة فعالية تحفيز ضوئي جديرة بالملاحظة في تحلل صبغة الميثيلين الزرقاء تحت التعرض المباشر لأشعة الشمس. لذلك، يشير هذا البحث إلى تقدم كبير في تقدم المحفز الضوئي المستدام لغرض التخلص من الأصباغ الضارة في الماء.

المراجع

Sardar S, Munawar T, Mukhtar F, Nadeem MS, Khan SA, et al.Fullerene trigged energy storage and photocatalytic ability of La2O3-ZnO@C60 core-shell nanocomposite: Mater Sci Eng B.2023; 288: 116151. https://doi.org/10.1016/j.mseb.2022.116151

Abbas NK, Shanan ZJ, Mohammed .H. Physical properties of Cu doped ZnO nanocrystiline thin films, Baghdad Sci J. 2022; 19(1): 217–224. http://dx.doi.org/10.21123/bsj.2022.19.1.0217

Hussain N A, Dakhil O A, Abbas L Y. Evaluation of the effect of Ag-doping ZnO microstructure on optical and structural properties and application in photocatalytic properties. MJS. 2023; 34 (3): 108-114. http://doi.org/10.23851/mjs.v34i3.1291

Abbas NK, Abdulameer AF, Ali RM, Alwash SM. The Effect of Heat Treatment on Opticalproperties of Copper (II) Phthalocyanine Tetrasulfonic Acid Tetrasodium Salt (CuPcTs) Organic Thin Films. Silicon. 2019; 11(2): 843–855. https://doi.org/10.1007/s12633-018-9874-4

Nadeem MS, Munawar T, Mukhtar F, Rabbani AW, Khan SA, et al. Synergistic photocatalytic properties of fullerene (C60) anchored V/Cu dual-doped NiO nanocomposites for water disinfection. Mater Sci Eng B .2023; 273: 116705. https://doi.org/10.1016/j.mseb.2023.116705 .

Moezzi A, McDonagh AM, Cortie MB. Zinc oxide particles: Synthesis, properties and applications. J. Chem Eng J. 2012; 185: 1-22. https://doi.org/10.1016/j.cej.2012.01.076

Azlina HN, Hasnidawani JN, Norita H, Surip SN. Synthesis of SiO2 nanostructures using the sol-gel method. Acta Phys Pol A. 2016; 129(4): 842–844 I. https://doi.org/10.12693/APhysPolA.129.842

Raoufi D. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew Energy. 2013; 50: 932–937. https://doi.org/10.1016/j.renen e.2012.08.076

Ashkarran AA, Irajizad A, Mahdavi SM, Ahadian MM. ZnO nanoparticles prepared by the electrical arc discharge method in water. Mater Chem Phys. 2009; 118(1): 6–8. https://doi.org/10.1016/j.match empathys.2009.07.002

Ejsmont A, Goscianska J. Hydrothermal Synthesis of ZnO Superstructures with Controlled Morphology via Temperature and PH Optimization. Materials. 2023; 16(4): 1641. https://doi.org/10.3390/ma16041641

Tarasenka NN, Kornev VG, Nedelko MI, Maltanova HM, Poznyak SK, Tarasenko NV. Electric field-assisted laser ablation fabrication and assembly of zinc oxide/carbon nanocomposites into hierarchical structures for supercapacitor electrodes. Nanoscale. 2024; 16(1): 322-334. https://doi.org/10.1016/j.apsusc.2023.158907

Rai RS, Bajpai V, Khan MI, Elboughdiri N, Shanableh A, et al. An eco-friendly approach on green synthesis, bio-engineering applications, and future outlook of ZnO nanomaterial: A critical review. Environ Res. 2023; 221: 114807. https://doi.org/10.1016/j.envres.2022.114807

Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. Green' synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology. 2018; 16: 84. https://doi.org/10.1155/2010/745120

Al-Zahrani SA, Patil MB, Mathad SN, Patil AY, Otaibi AA, et al. Photocatalytic Degradation of Textile Orange 16 Reactive Dye by ZnO Nanoparticles Synthesized via Green Route Using Punica Granatum Leaf Extract. Crystals. 2023; 13(2): 172. https://doi.org/10.3390/cryst13020172

Hassan SS, El Azab WI, Ali HR, Mansour MS.Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv Nat Sci Nanosci Nanotechnol. 2015; 6(4): 045012. https://doi.org/10.1088/2043-6262/6/4/04501

Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process. 2015; 32: 55–61. https://doi.org/10.1016/j.mssp.2014.12.053

Davar F, Majedi A, Mirzaei A. Green synthesis of ZnO nanoparticles and their application in the degradation of some dyes. J Am Ceram Soc. 2015; 98(6): 1739–1746. https://doi.org/10.1111/jace.13467

Faisal S, Jan H, Shah SA, Shah S, Khan A, et al. A Green synthesis of zinc oxide ZnO) nanoparticles using aqueous fruit extractsof Myristica fragrans: their characterizations and biological and environmental applications. ACS Omega. 2021; 6(14): 9709–9722. https://doi.org/10.1021/acsomega.1c00310

Alharthi FA, Alghamdi AA, Alothman AA, Almarhoon ZM, Alsulaiman MF. Green synthesis of ZnO nanostructures using Salvadora Persica leaf extract: applications for photocatalytic degradation of methylene blue dye. Crystals. 2020; 10(6): 441. http://dx.doi.org/10.3390/cryst10060441

Nadeem MS, Munawar T, Mukhtar F, Rabbani AW, Ur Rehman N, et al. Facile synthesis of PANI and rGO supported Y/Pr co-doped ZnO: boosted solar light-driven photocatalysis. Appl Phys A. 2023; 129(6): 450. https://doi.org/10.1007/s00339-023-06701-2

Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2): 71-79. https://doi.org/10.1016/j.jpha.2015.11.005

Rahman MM, Islam MB, Biswas M, Khurshid Alam AH. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res Notes. 2015; 8(1): 1–9. http://doi:10.1186/s13104-015-1618-6

Yung MMN, Mouneyrac C, Leung KMY. Ecotoxicity of zinc oxide nanoparticles in the marine environment. Encyclo. Nanotech. 2014; 1–17. http://doi:10.1007/978-94-007-6178-0_100970-1

Akhil K, Khan SS. Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems. J Photochem Photobiol B Biol. 2016; 167: 136-149. https://doi.org/10.1016/j.jphotobiol.2016.12.010

Singh K, Singh J, Rawat M. Green synthesis of zinc oxide nanoparticles using Punica Granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Appl Sci. 2019; 1: 1-8. https://doi.org/10.1007/s42452-019-0610-5

Jayachandran A, Aswathy TR, Nair AS. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochem Biophys Rep. 2021; 26: 100995. https://doi.org/10.1016/j.bbrep.2021.100995

Ghdeeb NJ, Mohammed AH, Majeed AM. The Anti-proliferative Activity of Factory Wastes Nanoparticles against Uterus Cancer Cells: In-vitro Study. Nano Biomed Eng. 2022; 14(2): 149-158. https://doi.org/10.5101/nbe.v14i2.p149-158

Sirdeshpande KD, Sridhar A, Cholkar KM, Selvaraj R. Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of Calliandra haematocephala and their photocatalytic degradation of malachite green dye. Appl. Nanosci. 2018; 8: 675-683. https://doi.org/10.1016/j.arabjc.2014.09.006

Chen C, Yu B, Liu P, Liu J, Wang L. Investigation of nano-sized ZnO particles fabricated by various synthesis routes. J Ceram Process Res. 2011; 12(4): 420-425. http://dx.doi.org/10.36410/jcpr.2011.12.4.420

Lu J, Batjikh I, Hurh J, Han Y, Ali H, et al. Photocatalytic degradation of methylene blue using biosynthesized zinc oxide nanoparticles from bark extract of Kalopanax septemlobus. Optik. 2019; 182: 980-985. https://doi.org/10.1016/j.ijleo.2018.12.016

Nusseif AD, Hussain NA, Sabry RS. Preparation and Wettability of Zinc Oxide Nanostructures by Oxidation of Zinc Foil in Hot Water. Iraqi J Appl Phys. 2023; 19 (4A): 67-72. https://www.iasj.net/iasj/download/4824e968123f3363.

Carmona-Carmona AJ, Mora ES, Flores JI, Márquez-Beltrán C, Castañeda-Antonio MD, et al. Photocatalytic Degradation of Methylene Blue by Magnetic Opal/Fe3O4 Colloidal Crystals under Visible Light Irradiation. Photochem. 2023; 3: 390–407. https://doi.org/10.3390/photochem3040024

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
التحلل الضوئي لصبغة الميثيلين الزرقاء باستخدام جسيمات أكسيد الزنك النانوية المحضرة بالطريقة الخضراء. Baghdad Sci.J [انترنت]. [وثق 23 ديسمبر، 2024];22(7). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/10735