Effect of Polyamine and Salicylic Acid on Growth and Yield of Chili Pepper Capsicum annuum L. Plant under Salt Stress
DOI:
https://doi.org/10.21123/bsj.2024.10995Keywords:
Capsicum annuum L., Chilli pepper, Polyamine, Salicylic acid, salt stressAbstract
Salt stress has adverse impacts on chili pepper (Capsicum annuum L.) growth, development and production. Plant tolerance must be increased to be able to adapt to salinity stress conditions. A factorial experiment with three factors according to Randomized Complete Blocks Design (RCBD) was conducted with three replicates. Polyamine P0, P1, P2 (0, 2, 3 mg L-1 Polyamine), salicylic acid A0, A1, A2 (0, 75, 150 mg L-1), sodium chloride S0, S1, S2 (0, 2000, 4000 ppm) with their interactions were investigated. Salinity had a significant negative effect on the phenotypic characteristics and yield. Polyamine P2, salicylic acid A2 and their interaction (P2A2) were superior, as the highest value was recorded in many of the studied characteristics in comparison to the control. Interaction P2A2S0 gave the highest value compared to other parameters for all processing methods. In summary, this result indicates that the application of polyamine and salicylic acid can effectively reduce the harmful effect of salt stress in chili pepper.
Received 19/02/2024
Revised 08/05/2024
Accepted 10/05/2024
Published Online First 20/07/2024
References
Kraft KH, Brown CH, Nabhan GP, Luedeling E, Luna Ruiz JD, Coppens d’Eeckenbrugge G, et al. Multiple lines of evidence for the origin of domesticated c````hili pepper Capsicum annuum, in Mexico. Proc Natl Acad Sci. 2014; 111(17): 6165-6170. https://doi.org/10.1073/pnas.1308933111
Scherer RF, Beltrame AB, Klabunde GH, Maro LA, Guimarães GG, Sônego M, et al. SCS453 Noninha and SCS454 Carvoeira-new banana cultivars of the Prata subgroup. Crop Breed Appl Technol. 2023 Mar 20; 23: e43412312 23(1):1-6 https://doi.org/10.1590/1984-70332023v23n1c2
Mishra N. Ethnopharmacological investigation of Indian spices. IGI Global. 2020 Mar 6. P124-136 https://doi.org/10.4018/978-1-7998-2524-1
Choudhary OP, Vilas KK. Soil Salinity and Sodicity. In book: Soil Science: An Introduction. 2018, pp.353-384.
Abdelaal KA, EL-Maghraby LM, Elansary H, Hafez YM, Ibrahim EI, El-Banna M, et al. Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy. 2019 Dec 23; 10(1): 26 P:1-15 https://doi.org/10.3390/agronomy10010026
Nandy S, Das T, Tudu CK, Mishra T, Ghorai M, Gadekar VS, et al. Unravelling the multi-faceted regulatory role of polyamines in plant biotechnology, transgenics and secondary metabolomics. Appl Microbiol Biotechnol. 2022 Feb; 106(3): 905-929. https://doi.org/10.1007/s00253-021-11748-3
Benavides MP, Groppa MD, Recalde L, Verstraeten SV. Effects of polyamines on cadmium-and copper-mediated alterations in wheat (Triticum aestivum L.) and sunflower (Helianthus annuus L.) seedling membrane fluidity. Arch Biochem Biophys. 2018 Sep 15; 654: 27-39. https://doi.org/10.1007/978-3-319-64922-1
Hussain SS, Ali M, Ahmad M, Siddique KH. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv. 2011 May 1; 29(3): 300-11. https://doi.org/10.1016/j.biotechadv.2011.01.003
Napieraj N, Janicka M, Reda M. Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress. Plants. 2023 Mar 3; 12(5): 1159. P:1-23 https://doi.org/10.3390/plants12051159
Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. 2019 Jan 10; 9: 1945. P:1-13 https://doi.org/10.3389/fpls.2018.01945
Rathinapriya P, Pandian S, Rakkammal K, Balasangeetha M, Alexpandi R, Satish L, et al. The protective effects of polyamines on salinity stress tolerance in foxtail millet (Setaria italica L.), an important C4 model crop. Physiol Mol Biol Plants. 2020 Sep; 26: 1815-29. https://doi.org/10.1007/s12298-020-00869-0
Shao J, Huang K, Batool M, Idrees F, Afzal R, Haroon M, et al. Versatile roles of polyamines in improving abiotic stress tolerance of plants. Front Plant Sci. 2022 Oct 13; 13: 1003155. P: 1-19 https://doi.org/10.3389/fpls.2022.1003155
Kaya C, Ugurlar F, Ashraf M, Ahmad P. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiol Biochem. 2023 Feb 4. P: 431-443 https://doi.org/10.1016/j.plaphy.2023.02.006
Çetinbaş-Genç A, Vardar F. The Role of Salicylic Acid in Plant Reproductive Development. Salicylic Acid-A Versatile Plant Growth Regulator. 2021: 35-45. https://doi.org/10.1007/978-3-030-79229-9_3
Hoque TS, Sohag AA, Burritt DJ, Hossain MA. Salicylic acid-mediated salt stress tolerance in plants. Plant Phenolics in Sustainable Agriculture: Vol 1. 2020: 1-38. https://doi.org/10.1007/978-981-15-4890-1_1
Simaei M, Khavari-Nejad RA, Bernard F. Exogenous application of salicylic acid and nitric oxide on the ionic contents and enzymatic activities in NaCl-stressed soybean plants. Am J Plant Sci. 2012; 3(10): 1495-1503. https://doi.org/10.4236/ajps.2012.310180
Talaat NB, Todorova D. Antioxidant machinery and glyoxalase system regulation confers salt stress tolerance to wheat (Triticum aestivum L.) plants treated with melatonin and salicylic acid. J Soil Sci Plant Nutr. 2022 Sep; 22(3): 3527-40. https://doi.org/10.1007/s42729-022-00907-8
Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S. Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environ Exp Bot. 2020 Jul 1; 175: 104040 https://doi.org/10.1016/j.envexpbot.2020.104040
Kaur G, Tak Y, Asthir B. Salicylic acid: A key signal molecule ameliorating plant stresses. Cereal Res Commun. 2022;50, 617–626. 1:1-0 https://doi.org/10.1007/s42976-021-00236-z
Karaca C, Büyüktaş DU, Şehir S. Determination of Leaf Area of Some Vegetable Plants Grown under Greenhouse Condition by Non-Destructive Methods. HortiS 2000. 38(1): 23-28. https://doi:10.16882/hortis.841745
Padilla FM, de Souza R, Peña-Fleitas MT, Gallardo M, Giménez C, Thompson RB. Different responses of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Front Plant Sci. 2018 Nov 27;(9): 1752 P:1-14 https://doi.org/10.3389/fpls.2018.01752
Wang-Kyun R, Hee-Woong K, Geun-Dong K, Hae-Ik R. Rapid determination of capsaicinoids by colorimetric method. J Food Drug Anal. 2017. 25 (4):798-803. https://doi.org/10.1016/j.jfda.2016.11.007.
Luhová L, Lebeda A, Hedererová D, Peč P. Activities of amine oxidase, peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil Environ. 2003; 49(4): 151-157. https://doi:10.17221/4106-PSE
SAS. 2021. Statistical Analysis System, User's Guide. Statistical. Version 9.6th ed. SAS. Inst. Inc. Cary. NC. USA.
Rustikawati R, Herison C, Sutrawati M, Umroh D. Assessment of salinity tolerance on chili pepper genotypes. E3S Web Conf. 2023;373. EDP Sciences. http://dx.doi.org/10.1051/e3sconf/202337303023
Shyaa TA, Mushtak FK. Effect of Humic acid, Cytokinin and Arginine on Growth and Yield Traits of Bean Plant Phaseolus vulgaris L. under salt stress. Baghdad Sci J. 2024; 21(3): 0919-0936. https://dx.doi.org/10.21123/bsj.2023.8617
Sinkovič L, Pipan B, Sinkovič E, Meglič V. Morphological seed characterization of common (Phaseolus vulgaris L.) and runner (Phaseolus coccineus L.) bean germplasm: A Slovenian gene bank example. Biomed Res Int. 2019 Jan 16; 2019 P:1-13 https://doi.org/10.1155/2019/6376948
Ramadan AA, Abd Elhamid EM, Sadak MS. Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bull Natl Res Cent. 2019 Dec; 43(1): 1-2. https://doi.org/10.1186/s42269-019-0156-0
Kisko MF, Kadhum NJ, Ali ZA, Abid NS. Effects of Nitrogen and Sulfur Sprays on the Growth and Production of Broccoli Brassica Oleracea var. Italica L.: nitrogen and sulfur spray enhance broccoli growth and production. Baghdad Sci J. 2021 Sep; 18(3): 501-508 https://doi.org/10.21123/bsj.2021.18.3.0501
Johnson R, Puthur J T. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiol. Biochem. 2021; 162: 247–257. https://doi.org/10.1016/j.plaphy.2021.02.034
Bello AS, Ben-Hamadou R, Hamdi H, Saadaoui I, Ahmed T. Application of cyanobacteria (roholtiella sp.) liquid extract for the alleviation of salt stress in bell pepper (capsicum annuum L.) plants grown in a soilless system. Plants. 2021 Dec 30; 11(1): 104 P:1-19 https://doi.org/10.3390/plants11010104
Osuna-Rodríguez JM, Hernández-Verdugo S, Osuna-Enciso T, Pacheco-Olvera A, Parra-Terraza S, Romero-Higareda CE, et al. Variations in salinity tolerance in wild pepper (Capsicum annuum L. var. glabriusculum) populations. Chil J Agric Res. 2023 Aug; 83(4): 432-43 http://dx.doi.org/10.4067/S0718-58392023000400432
Fu C, Khan MN, Yan J, Hong X, Zhao F, Chen L, et al. Mechanisms of nanomaterials for improving plant salt tolerance. Crop Environ. 2023; 2: 92–99. http://dx.doi.org/10.1016/j.crope.2023.03.002
Kumar S, Ahanger MA, Alshaya H, Jan BL, Yerramilli V. Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in capsicum annuum. Saudi J Biol Sci. 2022 Mar 1; 29(3): 1337-47. https://doi.org/10.1016/j.sjbs.2022.01.028
Mane AV, Karadge BA, Samant JS. Salinity Induced Changes in Catalase, Peroxidase and Acid Phosphatase in Four Grass Species. Nat Environ Pollut Technol. 2010 Dec; 9(4): 781-6.
Zamljen T, Medic A, Hudina M, Veberic R, Slatnar A. Salt stress differentially affects the primary and secondary metabolism of peppers (Capsicum annuum L.) according to the genotype, fruit part, and salinity Level. Plants. 2022; 11(7): 853. P:1-18 https://doi.org/10.3390/plants11070853
Shams M, Yuksel EA, Agar G, Ekinci M, Kul R, Turan M, et al. Biosynthesis of capsaicinoids in pungent peppers under salinity stress. Physiol Plant. 2023 Mar; 175(2): e13889. https://doi.org/10.1111/ppl.13889
Moustakas M, Sperdouli I, Moustaka J, Şaş B, İşgören S, Morales F. Mechanistic In sights on Salicylic Acid Mediated Enhancement of Photosystem II Function in Oregano Seedlings Subjected to Moderate Drought Stress. Plants. 2023 Jan 23; 12(3): 518 P:1-15 https://doi.org/10.3390/plants12030518
Lihavainen J, Šimura J, Bag P, Fataftah N, Robinson KM, Delhomme N, et al. Salicylic acid metabolism and signalling coordinate senescence initiation in aspen in nature. Nat Commun. 2023 Jul 18; 14(1): 4288.https://doi.org/10.1038/s41467-023-39564-5
Yang W, Zhou Z, Chu Z. Emerging roles of salicylic acid in plant saline stress tolerance. Int J Mol Sci. 2023 Feb 8; 24(4): 3388 P:1-15 https://doi.org/10.3390/ijms24043388
Borsani O, Valpuesta V, Botella MA. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant physiol. 2001 Jul 1; 126(3): 1024-30. https://doi.org/10.1104/pp.126.3.1024
Hundare A, Joshi V, Joshi N. Salicylic acid attenuates salinity-induced growth inhibition in in vitro raised ginger (Zingiber officinale Roscoe) plantlets by regulating ionic balance and antioxidative system. Plant Stress. 2022 Apr 1; 4: 100070 P:1-8 https://doi.org/10.1016/j.stress.2022.100070
Kwon EH, Adhikari A, Imran M, Lee DS, Lee CY, Kang SM, et al. Exogenous SA Applications Alleviate Salinity Stress via Physiological and Biochemical changes in St John's Wort Plants. Plants (Basel). 2023 Jan 9; 12(2): 310 P:1-19 https://doi.org/10.3390/plants12020310
Buffagni V, Zhang L, Senizza B, Rocchetti G, Ferrarini A, Miras-Moreno B, et al. Metabolomics and lipidomics insight into the effect of different polyamines on tomato plants under non-stress and salinity conditions. Plant Sci. 2022 Sep 1; 322: 111346 https://doi.org/10.1016/j.plantsci.2022.111346
Shu S, Yuan Y, Chen J, Sun J, Zhang W, Tang Y, et al. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Sci Rep. 2015 Oct 5; 5(1): 14390 P:1-16
https://doi.org/10.1038/srep14390
Zhang W, Jiang B, Li W, Song H, Yu Y, Chen J. Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci Hortic. 2009 Sep 17; 122(2):200-8. https://doi.org/10.1016/j.scienta.2009.05.013
Zhang YM, Wang Y, Wen WX, Shi ZR, Gu QS, Ahammed GJ, et al. Hydrogen peroxide mediates spermidine-induced autophagy to alleviate salt stress in cucumber. Autophagy. 2020; 17(10): 2876–2890 https://doi.org/10.1080/15548627.2020.1847797
Zeid IM. Response of bean (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress. Pak J Biol Sci. 2004; 7(2): 219-25. https://doi.org/10.3923/pjbs.2004.219.225
Roychoudhury A, Basu S, Sengupta DN. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol. 2011 Mar 1; 168(4): 317-28. https://doi.org/10.1016/j.jplph.2010.07.009
Ekinci M, Yıldırım E, Dursun A, Mohamedsrajaden N. Putrescine, spermine and spermidine mitigated the salt stress damage on Pepper (Capsicum annum L.) seedling. Yuz Yıl Univ J Agric Sci. 2019 Jun 6; 29(2): 290-9 https://doi.org/10.29133/yyutbd.562482
Downloads
Issue
Section
License
Copyright (c) 2024 Fatima Haider Subhi, Mushtak F. Karomi Kisko
This work is licensed under a Creative Commons Attribution 4.0 International License.