تأثير البولي امين وحامض الساليسيليك في نمو وحاصل نبات الفلفل الحريف  Capsicum annuum L.  تحت الإجهاد الملحي

المؤلفون

  • Fatima Haider Subhi قسم علوم الحياة، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق.
  • Mushtak F. Karomi Kisko قسم علوم الحياة، كلية العلوم للبنات، جامعة بغداد، بغداد، العراق.

DOI:

https://doi.org/10.21123/bsj.2024.10995

الكلمات المفتاحية:

Capsicum annuum L، فلفل حار، البولي امين، حامض الساليسليك، الاجهاد الملحي

الملخص

الإجهاد الملحي له اثار سلبية على نمو وانتاجية الفلفل الحريف (Capsicum annuum L.) ، ويجب زيادة تحمل النبات ليتمكن من التكيف في ظروف إجهاد الملوحة. ولهذا الغرض أجريت تجربة عاملية بثلاثة عوامل وفق تصميم القطاعات العشوائية الكاملة (RCBD) وبثلاث مكررات تضمنت التجربة ثلاثة مستويات من البولي امين P0،P1 ، P2 (0، 2، 3 ملغم.ل-1)، وثلاثة مستويات من حامض الساليسيلك A0، A1،  A2(0، 75، 150 ملغم.ل-1) ، أما العامل الثالث فيتضمن ثلاثة مستويات من ملح كلوريد الصوديوم S0، S1، S2  (0، 2000، 4000 جزء في المليون). أظهرت نتائج التجربة أن اختلاف مستويات الملوحة كان له تأثير سلبي معنوي على الصفات المظهرية وحاصل الفلفل الحار، ولوحظ ان البولي امين P2 وحامض الساليسيليك A2 كانت متفوقة حيث اعطت أعلى قيمة في العديد من الصفات المدروسة، أما عند التداخل بين البولي امين وحامض الساليسيليك فقد لوحظ أن أعلى قيمة كانت P2A2 لنفس الصفات المدروسة عند مقارنتها بمعاملة السيطرة، بينما أعطى التداخل الثلاثي P2A2S0  أعلى قيمة مقارنة مع باقي الصفات المدروسة لجميع طرق المعالجة، باختصار، تشير هذه النتائج إلى أن اضافة البولي امين وحامض الساليسيليك يمكن أن يقلل بشكل فعال من التأثير الضار للإجهاد الملحي في الفلفل الحار.

المراجع

Kraft KH, Brown CH, Nabhan GP, Luedeling E, Luna Ruiz JD, Coppens d’Eeckenbrugge G, et al. Multiple lines of evidence for the origin of domesticated c````hili pepper Capsicum annuum, in Mexico. Proc Natl Acad Sci. 2014; 111(17): 6165-6170.‏ https://doi.org/10.1073/pnas.1308933111

Scherer RF, Beltrame AB, Klabunde GH, Maro LA, Guimarães GG, Sônego M, et al. SCS453 Noninha and SCS454 Carvoeira-new banana cultivars of the Prata subgroup. Crop Breed Appl Technol. 2023 Mar 20; 23: e43412312 23(1):1-6 https://doi.org/10.1590/1984-70332023v23n1c2

Mishra N. Ethnopharmacological investigation of Indian spices. IGI Global. 2020 Mar 6. P124-136 https://doi.org/10.4018/978-1-7998-2524-1

Choudhary OP, Vilas KK. Soil Salinity and Sodicity. In book: Soil Science: An Introduction. 2018, pp.353-384.

Abdelaal KA, EL-Maghraby LM, Elansary H, Hafez YM, Ibrahim EI, El-Banna M, et al. Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy. 2019 Dec 23; 10(1): 26 P:1-15 https://doi.org/10.3390/agronomy10010026

Nandy S, Das T, Tudu CK, Mishra T, Ghorai M, Gadekar VS, et al. Unravelling the multi-faceted regulatory role of polyamines in plant biotechnology, transgenics and secondary metabolomics. Appl Microbiol Biotechnol. 2022 Feb; 106(3): 905-929. https://doi.org/10.1007/s00253-021-11748-3

Benavides MP, Groppa MD, Recalde L, Verstraeten SV. Effects of polyamines on cadmium-and copper-mediated alterations in wheat (Triticum aestivum L.) and sunflower (Helianthus annuus L.) seedling membrane fluidity. Arch Biochem Biophys. 2018 Sep 15; 654: 27-39. https://doi.org/10.1007/978-3-319-64922-1

Hussain SS, Ali M, Ahmad M, Siddique KH. Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv. 2011 May 1; 29(3): 300-11. https://doi.org/10.1016/j.biotechadv.2011.01.003

Napieraj N, Janicka M, Reda M. Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress. Plants. 2023 Mar 3; 12(5): 1159. P:1-23 https://doi.org/10.3390/plants12051159

Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. 2019 Jan 10; 9: 1945. P:1-13 https://doi.org/10.3389/fpls.2018.01945

Rathinapriya P, Pandian S, Rakkammal K, Balasangeetha M, Alexpandi R, Satish L, et al. The protective effects of polyamines on salinity stress tolerance in foxtail millet (Setaria italica L.), an important C4 model crop. Physiol Mol Biol Plants. 2020 Sep; 26: 1815-29. https://doi.org/10.1007/s12298-020-00869-0

Shao J, Huang K, Batool M, Idrees F, Afzal R, Haroon M, et al. Versatile roles of polyamines in improving abiotic stress tolerance of plants. Front Plant Sci. 2022 Oct 13; 13: 1003155. P: 1-19 https://doi.org/10.3389/fpls.2022.1003155

Kaya C, Ugurlar F, Ashraf M, Ahmad P. Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiol Biochem. 2023 Feb 4. P: 431-443 https://doi.org/10.1016/j.plaphy.2023.02.006

Çetinbaş-Genç A, Vardar F. The Role of Salicylic Acid in Plant Reproductive Development. Salicylic Acid-A Versatile Plant Growth Regulator. 2021: 35-45. https://doi.org/10.1007/978-3-030-79229-9_3

Hoque TS, Sohag AA, Burritt DJ, Hossain MA. Salicylic acid-mediated salt stress tolerance in plants. Plant Phenolics in Sustainable Agriculture: Vol 1. 2020: 1-38. https://doi.org/10.1007/978-981-15-4890-1_1

Simaei M, Khavari-Nejad RA, Bernard F. Exogenous application of salicylic acid and nitric oxide on the ionic contents and enzymatic activities in NaCl-stressed soybean plants. Am J Plant Sci. 2012; 3(10): 1495-1503. https://doi.org/10.4236/ajps.2012.310180

Talaat NB, Todorova D. Antioxidant machinery and glyoxalase system regulation confers salt stress tolerance to wheat (Triticum aestivum L.) plants treated with melatonin and salicylic acid. J Soil Sci Plant Nutr. 2022 Sep; 22(3): 3527-40. https://doi.org/10.1007/s42729-022-00907-8

Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S. Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environ Exp Bot. 2020 Jul 1; 175: 104040 https://doi.org/10.1016/j.envexpbot.2020.104040

Kaur G, Tak Y, Asthir B. Salicylic acid: A key signal molecule ameliorating plant stresses. Cereal Res Commun. 2022;50, 617–626. 1:1-0 https://doi.org/10.1007/s42976-021-00236-z

Karaca C, Büyüktaş DU, Şehir S. Determination of Leaf Area of Some Vegetable Plants Grown under Greenhouse Condition by Non-Destructive Methods. HortiS 2000. 38(1): 23-28. https://doi:10.16882/hortis.841745

Padilla FM, de Souza R, Peña-Fleitas MT, Gallardo M, Giménez C, Thompson RB. Different responses of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Front Plant Sci. 2018 Nov 27;(9): 1752 P:1-14 https://doi.org/10.3389/fpls.2018.01752

Wang-Kyun R, Hee-Woong K, Geun-Dong K, Hae-Ik R. Rapid determination of capsaicinoids by colorimetric method. J Food Drug Anal. 2017. 25 (4):798-803. https://doi.org/10.1016/j.jfda.2016.11.007.

Luhová L, Lebeda A, Hedererová D, Peč P. Activities of amine oxidase, peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil Environ. 2003; 49(4): 151-157. https://doi:10.17221/4106-PSE

SAS. 2021. Statistical Analysis System, User's Guide. Statistical. Version 9.6th ed. SAS. Inst. Inc. Cary. NC. USA.

Rustikawati R, Herison C, Sutrawati M, Umroh D. Assessment of salinity tolerance on chili pepper genotypes. E3S Web Conf. 2023;373. EDP Sciences. http://dx.doi.org/10.1051/e3sconf/202337303023

Shyaa TA, Mushtak FK. Effect of Humic acid, Cytokinin and Arginine on Growth and Yield Traits of Bean Plant Phaseolus vulgaris L. under salt stress. Baghdad Sci J. 2024; 21(3): 0919-0936. https://dx.doi.org/10.21123/bsj.2023.8617

Sinkovič L, Pipan B, Sinkovič E, Meglič V. Morphological seed characterization of common (Phaseolus vulgaris L.) and runner (Phaseolus coccineus L.) bean germplasm: A Slovenian gene bank example. Biomed Res Int. 2019 Jan 16; 2019 P:1-13 https://doi.org/10.1155/2019/6376948

Ramadan AA, Abd Elhamid EM, Sadak MS. Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bull Natl Res Cent. 2019 Dec; 43(1): 1-2. https://doi.org/10.1186/s42269-019-0156-0

Kisko MF, Kadhum NJ, Ali ZA, Abid NS. Effects of Nitrogen and Sulfur Sprays on the Growth and Production of Broccoli Brassica Oleracea var. Italica L.: nitrogen and sulfur spray enhance broccoli growth and production. Baghdad Sci J. 2021 Sep; 18(3): 501-508 https://doi.org/10.21123/bsj.2021.18.3.0501

Johnson R, Puthur J T. Seed priming as a cost effective technique for developing plants with cross tolerance to salinity stress. Plant Physiol. Biochem. 2021; 162: 247–257. https://doi.org/10.1016/j.plaphy.2021.02.034

Bello AS, Ben-Hamadou R, Hamdi H, Saadaoui I, Ahmed T. Application of cyanobacteria (roholtiella sp.) liquid extract for the alleviation of salt stress in bell pepper (capsicum annuum L.) plants grown in a soilless system. Plants. 2021 Dec 30; 11(1): 104 P:1-19 https://doi.org/10.3390/plants11010104

Osuna-Rodríguez JM, Hernández-Verdugo S, Osuna-Enciso T, Pacheco-Olvera A, Parra-Terraza S, Romero-Higareda CE, et al. Variations in salinity tolerance in wild pepper (Capsicum annuum L. var. glabriusculum) populations. Chil J Agric Res. 2023 Aug; 83(4): 432-43 http://dx.doi.org/10.4067/S0718-58392023000400432

Fu C, Khan MN, Yan J, Hong X, Zhao F, Chen L, et al. Mechanisms of nanomaterials for improving plant salt tolerance. Crop Environ. 2023; 2: 92–99. http://dx.doi.org/10.1016/j.crope.2023.03.002

Kumar S, Ahanger MA, Alshaya H, Jan BL, Yerramilli V. Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in capsicum annuum. Saudi J Biol Sci. 2022 Mar 1; 29(3): 1337-47. https://doi.org/10.1016/j.sjbs.2022.01.028

Mane AV, Karadge BA, Samant JS. Salinity Induced Changes in Catalase, Peroxidase and Acid Phosphatase in Four Grass Species. Nat Environ Pollut Technol. 2010 Dec; 9(4): 781-6.

Zamljen T, Medic A, Hudina M, Veberic R, Slatnar A. Salt stress differentially affects the primary and secondary metabolism of peppers (Capsicum annuum L.) according to the genotype, fruit part, and salinity Level. Plants. 2022; 11(7): 853. P:1-18 https://doi.org/10.3390/plants11070853

Shams M, Yuksel EA, Agar G, Ekinci M, Kul R, Turan M, et al. Biosynthesis of capsaicinoids in pungent peppers under salinity stress. Physiol Plant. 2023 Mar; 175(2): e13889. https://doi.org/10.1111/ppl.13889

Moustakas M, Sperdouli I, Moustaka J, Şaş B, İşgören S, Morales F. Mechanistic In sights on Salicylic Acid Mediated Enhancement of Photosystem II Function in Oregano Seedlings Subjected to Moderate Drought Stress. Plants. 2023 Jan 23; 12(3): 518 P:1-15 https://doi.org/10.3390/plants12030518

Lihavainen J, Šimura J, Bag P, Fataftah N, Robinson KM, Delhomme N, et al. Salicylic acid metabolism and signalling coordinate senescence initiation in aspen in nature. Nat Commun. 2023 Jul 18; 14(1): 4288.https://doi.org/10.1038/s41467-023-39564-5

Yang W, Zhou Z, Chu Z. Emerging roles of salicylic acid in plant saline stress tolerance. Int J Mol Sci. 2023 Feb 8; 24(4): 3388 P:1-15 https://doi.org/10.3390/ijms24043388

Borsani O, Valpuesta V, Botella MA. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant physiol. 2001 Jul 1; 126(3): 1024-30. https://doi.org/10.1104/pp.126.3.1024

Hundare A, Joshi V, Joshi N. Salicylic acid attenuates salinity-induced growth inhibition in in vitro raised ginger (Zingiber officinale Roscoe) plantlets by regulating ionic balance and antioxidative system. Plant Stress. 2022 Apr 1; 4: 100070 P:1-8 https://doi.org/10.1016/j.stress.2022.100070

Kwon EH, Adhikari A, Imran M, Lee DS, Lee CY, Kang SM, et al. Exogenous SA Applications Alleviate Salinity Stress via Physiological and Biochemical changes in St John's Wort Plants. Plants (Basel). 2023 Jan 9; 12(2): 310 P:1-19 https://doi.org/10.3390/plants12020310

Buffagni V, Zhang L, Senizza B, Rocchetti G, Ferrarini A, Miras-Moreno B, et al. Metabolomics and lipidomics insight into the effect of different polyamines on tomato plants under non-stress and salinity conditions. Plant Sci. 2022 Sep 1; 322: 111346 https://doi.org/10.1016/j.plantsci.2022.111346

Shu S, Yuan Y, Chen J, Sun J, Zhang W, Tang Y, et al. The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. Sci Rep. 2015 Oct 5; 5(1): 14390 P:1-16

https://doi.org/10.1038/srep14390

Zhang W, Jiang B, Li W, Song H, Yu Y, Chen J. Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Sci Hortic. 2009 Sep 17; 122(2):200-8. https://doi.org/10.1016/j.scienta.2009.05.013

Zhang YM, Wang Y, Wen WX, Shi ZR, Gu QS, Ahammed GJ, et al. Hydrogen peroxide mediates spermidine-induced autophagy to alleviate salt stress in cucumber. Autophagy. 2020; 17(10): 2876–2890 https://doi.org/10.1080/15548627.2020.1847797

Zeid IM. Response of bean (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress. Pak J Biol Sci. 2004; 7(2): 219-25. https://doi.org/10.3923/pjbs.2004.219.225

Roychoudhury A, Basu S, Sengupta DN. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol. 2011 Mar 1; 168(4): 317-28. https://doi.org/10.1016/j.jplph.2010.07.009

Ekinci M, Yıldırım E, Dursun A, Mohamedsrajaden N. Putrescine, spermine and spermidine mitigated the salt stress damage on Pepper (Capsicum annum L.) seedling. Yuz Yıl Univ J Agric Sci. 2019 Jun 6; 29(2): 290-9 https://doi.org/10.29133/yyutbd.562482

التنزيلات

إصدار

القسم

article

كيفية الاقتباس

1.
تأثير البولي امين وحامض الساليسيليك في نمو وحاصل نبات الفلفل الحريف  Capsicum annuum L.  تحت الإجهاد الملحي. Baghdad Sci.J [انترنت]. [وثق 21 نوفمبر، 2024];22(2). موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/10995