Modules Whose St-Closed Submodules are Fully Invariant

Authors

  • Maysaa Riadh Abbas Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq.
  • Muna Abbas Ahmed Department of Mathematics, College of Science for Women, University of Baghdad, Baghdad, Iraq. https://orcid.org/0000-0003-2436-3765

DOI:

https://doi.org/10.21123/bsj.2024.11434

Keywords:

Closed submodule, Duo module, Fully Invariant submodule, St-closed submodule, Stc-duo module.

Abstract

          The duo module plays an important role in the module theory. Many researchers generalized this concept such as Ozcan AC, Hadi IMA and Ahmed MA. It is known that in a duo module, every submodule is fully invariant. This paper used the class of St-closed submodules to work out a module with the feature that all St-closed submodules are fully invariant. Such a module is called an Stc-duo module. This class of modules contains the duo module properly as well as the CL-duo module which was introduced by Ahmed MA. The behaviour of this new kind of module was considered and studied in detail, for instance, the hereditary property of the St-duo module was investigated, as the result; under certain conditions, every St-closed submodule of an St-duo module is also St-duo. Another characterization of the Stc-duo module was given. Additionally, the relationships of St-duo among some types of modules were investigated and discussed, for example; In the class of semi-extending modules, every weak duo module is an Stc-duo module. Also, the authors gave a case in which St-duo, duo, CL-duo and weak duo are equivalent. Furthermore, the St-duo module was used to make the concepts semi-extending and FI-extending equivalent.

References

Ozcan AC, Harmanci A, Smith PF. Duo module. Glasgow Math J. 2006; 48: 533-545. https://doi.org/10.1017/S0017089506003260

Hadi IMA. On P-Duo modules. Int J Algebra. 2014; 8(5): 229-238. http://dx.doi.org/10.12988/ija.2014.4212

Ahmad MA. CL-Duo modules. Baghdad Sci J. 2017; 14(3): 642-650. https://doi.org/10.21123/bsj.2017.14.3.0642

Goodearl KR. Ring theory, nonsingular rings and modules. Marcel Dekker, New York and Basel; 1976. 206p.

Anderson FW, Fuller KR. Rings and categories of modules. 2nd Ed. Springer-Verlag, New York, Academic and Press Inc. London; 1992. 376p.

Kasch F. Modules and rings. Academic Press, London; 1982. 372p. https://epub.ub.uni-muenchen.de/20922/1/20922.pdf

Durgun Y, Ozdemir S. On D-closed submodules. Proc Indian Acad. Sci (Math. Sci.). 2020; 130:1-page. https://doi.org/10.1007/s12044-019-0537-1

Mijbass AS, Abdullah NK. Semi-essential submodule and semi-uniform module. Kirkuk J Sci. 2009; 4(1): 48-58. https://doi.org/10.32894/kujss.2009.40796

Shahad HA, Al-Mothafar NS. P-Essential submodules. Iraqi J Sci. 2021; 62(12): 4916-4922. https://doi.org/10.24996/ijs.2021.62.12.29

Alboshindi ZW, Alhossaini AMA. Fully prime semimodule, fully essential semimodule and semi-complement subsemimodules. Iraqi J Sci. 2021; 63(12): 5455-5466. https://doi.org/10.24996/ijs.2022.63.12.31

Abduljaleel AA. Yaseen SM. Large-Maximal submodules. Journal of Physics: Conference Series, 2nd International Conference on Physics and Applied Sciences (ICPAS 2021). https://doi.org/10.1088/1742-6596/1963/1/012011

Nimbhorkar SK, Khubchandani JA. Fuzzy semi-essential submodules and fuzzy semi-closed submodules. TWMS. J App Eng Math. 2023; 13(2): 568-575.

Ahmed MA, Abbas MR. St-closed submodules. ANJS. 2015; 18(3): 141-149.

Kshirsagar PS, Shroff RC. Semi-Extending ideals and St-closed ideals in lattices, Novi Sad J. Math. First published online May 18, 2023. https://doi.org/10.30755/NSJOM.14853

Barnard A. Multiplication Modules, J Algebra. 1981; 71: 174-178. https://doi.org/10.1016/0021-8693(81)90112-5

Ahmed MA, Abass MR, Adeeb NR. Almost semi-extending modules. Iraqi J Sci. 2022; 63(7): 3111-3119. https://doi.org/10.24996/ijs.2022.63.7.32

Nayef MS. Stc-M-injective and Stc-self-injective modules. Int J Adv Sci Res. 2018; 8(1): 22-30. https://dx.doi.org/10.26808/rs.st.i8v1.03

Behboodi M, Karamzadeh OAS, Koohy H. Modules whose certain submodules are prime. Vietnam J Math. 2004; 32(3): 303-317.

Al-Bahraany BH. On purely y-extending module. Iraqi J Sci. 2013; 54(3): 672-675.

Lam TY. Lectures on modules and rings, Berkeley, California Springer. 1998.

Birkenmeier GF, Muller BJ, Rizvi ST. Modules in which every fully invariant submodule is essential in direct summand. comm Alg. 2002; 30(3): 1395-1415. https://doi.org/10.1080/00927870209342387

Yucel CC. On generalized FI-extending modules. Kyungpook Math J. 2020; 60: 45-51. https://doi.org/10.5666/KMJ.2020.60.1.45

Downloads

Issue

Section

article

How to Cite

1.
Modules Whose St-Closed Submodules are Fully Invariant. Baghdad Sci.J [Internet]. [cited 2024 Nov. 7];22(5). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/11434