A Comparative Study on the Double Prior for Reliability Kumaraswamy Distribution with Numerical Solution
Main Article Content
Abstract
This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The results showed that the reliability estimator under Rn and R3 is the best.
Received 17/11/2018, Accepted 25/6/2019, Published 1/3/2020