Preparation and study of the Structural, Morphological and Optical properties of pure Tin Oxide Nanoparticle doped with Cu

Main Article Content

Duha S. Shaker
Nada K. Abass
Ruqayah A. Ulwall


            In this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and SEM results of the pure and doped confirmed that the particle size is within the range (25-56)nm within the nanosize. UV-Vis studies of reflection spectroscopy revealed that energy of band gap increased with increasing doping ratios (4.33,4.18 ,4.21, 4.21 4.23,4.35) ev For pure and doped with Cu (0.5%, 1%, 1.5%, 2%, 2.5%, 3%) respectively. Results of AFM show roughness rate, SPM and grain size of pure samples doped with Cu where the roughness rate of SnO2 is (3.04, 25,27,16,41.8,23.6,25.2) nm and average diameter is (98.9, 72.56 ,92.91, 88.38, 76.79, 70.94, 71.21) nm for pure and doped with Copper (0.5%, 1%, 1.5%, 2%, 2.5%, 3%) respectively.


Download data is not yet available.

Article Details

How to Cite
Shaker DS, Abass NK, Ulwall RA. Preparation and study of the Structural, Morphological and Optical properties of pure Tin Oxide Nanoparticle doped with Cu. Baghdad Sci.J [Internet]. [cited 2021Dec.4];19(3):0660. Available from:


Hornyak GL, Moore JJ, Tibbals HF, Dutta J. Fundamentals of nanotechnology. 1St ed. Boca Raton: Taylor&Francis Group ; 2009. Ch.1, P .786-4.

Poole Jr CP, Owens FJ. Introduction to nanotechnology.1St ed.Hoboken,New Jersey,in Canada : John Wiley & Sons,Inc;2003. Ch.1, P.388-4.

Pascariu P, Airinei A, Grigoras M, Fifere N, Sacarescu L, Lupu N, et al. Structural, optical and magnetic properties of Ni doped SnO2 nanoparticles. J. Alloys Compd. 2016; 668:65–72.

Dey A. Semiconductor metal oxide gas sensors: A review. Mat Sci Eng B-Adv. 2018; 229:206– 17.

Mubeenabanu A, Veemaraj T. Effect of Ag Doping on Structural and Optical Properties of ZnO Nanoparticles. Adv Appl Sci Res. 2017;1(9).

Gautam S, Agrawal H, Thakur M, Akbari A, Sharda H, Kaur R, et al. Metal oxides and metal organic frameworks for the photocatalytic degradation: A review. J. Environ. Chem. Eng.. 2020;8(3):103726.

Danish MSS, Estrella LL, Alemaida IMA, Lisin A, Moiseev N, Ahmadi M, et al. Photocatalytic Applications of Metal Oxides for Sustainable Environmental Remediation. Metals 2021, 11, 80. MDPI; 2021.

Umar A, Ammar HY, Kumar R, Almas T, Ibrahim AA, AlAssiri MS, et al. Efficient H2 gas sensor based on 2D SnO2 disks: experimental and theoretical studies. Int. J Hydrog Energ. 2020;45(50):26388–401.

Pascariu P, Airinei A, Olaru N, Petrila I, Nica V, Sacarescu L, et al. Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO2 nanofibers. Sens. Actuators B Chem. 2016; 222:1024–31.

Sharma N, Jha R, Jindal N. Hydrothermally Synthesized Stannic Oxide Nano-hexagons. Mater Today Proc. 2018;5(5):13807–15.

Periyasamy M, Kar A. Modulating the properties of SnO2 nanocrystals: morphological effects on structural, photoluminescence, photocatalytic, electrochemical and gas sensing properties. J. Mater Chem C. 2020;8(14):4604–35.

Mehra S, Bishnoi S, Jaiswal A, Jagadeeswararao M, Srivastava AK, Sharma SN, et al. A review on spectral converting nanomaterials as a photoanode layer in dye‐sensitized solar cells with implementation in energy storage devices. Energy Storage Mater. 2020;2(2):e120.

Xu R, Zhang L-X, Li M-W, Yin Y-Y, Yin J, Zhu M-Y, et al. Ultrathin SnO2 nanosheets with dominant high-energy {001} facets for low temperature formaldehyde gas sensor. Sens. Actuators B Chem. 2019; 289:186–94.

Kadhim IH, Hassan HA, Ibrahim FT. Hydrogen gas sensing based on nanocrystalline SnO2 thin films operating at low temperatures. Int J Hydrogen Energ. 2020;45(46):25599–607.

Kadhim IH, Hassan HA. Hydrogen gas sensing based on SnO 2 nanostructure prepared by sol–gel spin coating method. J Electron Mater. 2017;46(3):1419–26.

Chithra MJ, Sathya M, Pushpanathan K. Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metal Sin Eng llett. 2015;28(3):394–404. 2015;28(3):394–404.

Amendola V, Amans ID, Ishikawa Y, Koshizaki N, Scirè S, Compagnini G, et al. Room‐Temperature Laser Synthesis in Liquid of Oxide, Metal‐Oxide Core‐Shells, and Doped Oxide Nanoparticles. Chemistry. 2020;26(42):9206.

Khan D, Rehman A, Rafiq MZ, Khan AM, Ali M. Improving the Optical properties of SnO2 nanoparticles through Ni doping by sol-gel Technique. CRGSC. 2021;100079.

Nada A, Khalid R, Zainb J. New Method of Preparation ZnS Nano size at low pH. Int. J. Electrochem. Sci., 2013;(8): 3049 - 3056

Vojvodić K, Nikolić-Bujanović L, Mrazovac-Kurilić S, Staletović N. Application of ecofrendly oxidant ferrate (vi) in the metallurgical processes of copper extraction. J. Min. Metall., Sect. B Metall. 2018;(3–4):97–108.

Nada A, Mohammed T, Lamia A,” Fabricated of Cu Doped ZnO Nanoparticles for Solar Cell Application” Baghdad Sci. J. 2018;15(2).

Mohammed A, Bachtiar D, Siregar JP, Rejab MRM. Effect of sodium hydroxide on the tensile properties of sugar palm fibre reinforced thermoplastic polyurethane composites. J Mech Eng. Sci. 2016;10(1):1765–77.

Muliyadi L, Doyan A, Susilawati S, Hakim S. Synthesis of SnO2 Thin Layer with a Doping Fluorine by Sol-Gel Spin Coating Method. J JPPIPA. 2019;5(2):175–8.

Sagadevan S, Johan M, Bin R, Aziz FA, Hsu H-L, Selvin R, et al. Influence of Mn Doping on the Properties of Tin Oxide Nanoparticles Prepared by Co-Precipitation Method. J Nanoelectron. Optoelectron. 2019;14(4):583–92.

Yakout SM. Robust ferromagnetic and fast sunlight photocatalytic properties of nanocrystalline SnO2: Co/Cu codoping. Ceram. Int. 2021;47(7):10104–12.

Ehsani M, Hamidon MN, Toudeshki A, Abadi MHS, Rezaeian S. CO2 gas sensing properties of screen-printed La 2 O 3/SnO2 thick film. IEEE Sens J. 2016;16(18):6839–45.

Mason RP, Tulenko TN, Jacob RF. Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. Biochim Biophys Acta, Biomembr. 2003;1610(2):198–207.

Sarmah S, Kumar A. Electrical and optical studies in polyaniline nanofibre–SnO2 nanocomposites. Bull Mater Sci. 2013;36(1):31–6.

Gosens I, Post JA, de la Fonteyne LJJ, Jansen EHJM, Geus JW, Cassee FR, et al. Impact of agglomeration state of nano-and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol. 2010;7(1):1–11.

Dahman Y. Nanotechnology and functional materials for engineers. 1St ed . Elsevier; 2017. Ch.1, An Introduction to Nanotechnology; P .282-14.

Iwashita N. X-ray powder diffraction. In: Materials science and engineering of carbon.1St ed. Elsevier; 2016.; p. 7–25.

Andrade AB, Ferreira NS, Valerio MEG. Particle size effects on structural and optical properties of BaF 2 nanoparticles. RSC Adv. 2017;7(43):26839–48.

Shamaila S, Bano T, Sajjad AKL. Efficient visible light magnetic modified iron oxide photocatalysts. Ceram Int. 2017;43(17):14672–7.

Saikia K, Deb P, Kalita E. Sensitive fluorescence response of ZnSe (S) quantum dots: an efficient fluorescence probe. Phys Scr. 2013;87(6):65802.

Sharma RK, Agrawal M, Marshall F. Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull Environ Contam Toxicol. 2006;77(2):312–8.

Vayssieres L, Sathe C, Butorin SM, Shuh DK, Nordgren J, Guo J. One‐dimensional quantum‐confinement effect in α‐Fe2O3 ultrafine nanorod arrays. Adv. Mater. 2005;17(19):2320–3.

Ziabari AA, Ghodsi FE. Influence of Cu doping and post-heat treatment on the microstructure, optical properties and photoluminescence features of sol–gel derived nanostructured CdS thin films. J Lumin. 2013; 141:121–9.

Brindley GW. XLV. The effect of grain or particle Size on X-ray reflections from mixed powders and alloys, considered in relation to the quantitative determination of crystalline substances by X-ray methods. Mater Sic. 1945;36(256):347–69.